找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intermediate Spectral Theory and Quantum Dynamics; César R. Oliveira Book 2009 Birkh?user Basel 2009 Potential.Quantum Dynamics.Quantum re

[復(fù)制鏈接]
樓主: palliative
51#
發(fā)表于 2025-3-30 11:41:42 | 只看該作者
Unitary Evolution Groups,tes, that is, the solutions of Schrh?dinger equations. In this chapter such relations are described in detail, including standard examples of unitary evolution groups and infinitesimal generators. Different continuity assumptions on the unitary groups are discussed.
52#
發(fā)表于 2025-3-30 15:53:51 | 只看該作者
53#
發(fā)表于 2025-3-30 20:16:34 | 只看該作者
Spectral Theorem,f-adjoint operators. Although a complete proof of this theorem for a given operator is not presented, different approaches to the proof are indicated. Spectral measures of some simple examples are discussed. Chapter 9 is devoted to some consequences of the spectral theorem. . denotes the σ-algebra of Borel sets in ?.
54#
發(fā)表于 2025-3-31 00:30:01 | 只看該作者
Convergence of Self-Adjoint Operators,vergence are introduced. The strong convergences in the resolvent and dynamical senses are shown to be equivalent. Some relations with spectrum are also discussed. Convergence to operators with shrinking domains are discussed with the help of sesquilinear forms, with application to the Aharonov-Bohm effect.
55#
發(fā)表于 2025-3-31 00:55:02 | 只看該作者
Spectral Decomposition I,en atom hamiltonian. Other applications include the discrete spectrum in case of unbounded potentials in ?. and the comparison of the spectra of different self-adjoint extensions (in case of finite deficiency indices).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
醴陵市| 张家口市| 长汀县| 望奎县| 施秉县| 吉林市| 沙坪坝区| 温宿县| 金华市| 阿合奇县| 白银市| 潞西市| 大埔县| 兖州市| 建湖县| 石家庄市| 抚顺县| 丰镇市| 将乐县| 卢氏县| 恩施市| 巴彦县| 韩城市| 上蔡县| 喀喇| 南汇区| 石景山区| 白沙| 湛江市| 南华县| 诏安县| 淮南市| 黑龙江省| 城步| 永昌县| 通江县| 康马县| 呼伦贝尔市| 沙雅县| 龙泉市| 河东区|