找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intermediate Spectral Theory and Quantum Dynamics; César R. Oliveira Book 2009 Birkh?user Basel 2009 Potential.Quantum Dynamics.Quantum re

[復(fù)制鏈接]
樓主: palliative
51#
發(fā)表于 2025-3-30 11:41:42 | 只看該作者
Unitary Evolution Groups,tes, that is, the solutions of Schrh?dinger equations. In this chapter such relations are described in detail, including standard examples of unitary evolution groups and infinitesimal generators. Different continuity assumptions on the unitary groups are discussed.
52#
發(fā)表于 2025-3-30 15:53:51 | 只看該作者
53#
發(fā)表于 2025-3-30 20:16:34 | 只看該作者
Spectral Theorem,f-adjoint operators. Although a complete proof of this theorem for a given operator is not presented, different approaches to the proof are indicated. Spectral measures of some simple examples are discussed. Chapter 9 is devoted to some consequences of the spectral theorem. . denotes the σ-algebra of Borel sets in ?.
54#
發(fā)表于 2025-3-31 00:30:01 | 只看該作者
Convergence of Self-Adjoint Operators,vergence are introduced. The strong convergences in the resolvent and dynamical senses are shown to be equivalent. Some relations with spectrum are also discussed. Convergence to operators with shrinking domains are discussed with the help of sesquilinear forms, with application to the Aharonov-Bohm effect.
55#
發(fā)表于 2025-3-31 00:55:02 | 只看該作者
Spectral Decomposition I,en atom hamiltonian. Other applications include the discrete spectrum in case of unbounded potentials in ?. and the comparison of the spectra of different self-adjoint extensions (in case of finite deficiency indices).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德安县| 手游| 衡阳市| 乐东| 珠海市| 河北区| 大埔县| 原阳县| 腾冲县| 信丰县| 灵璧县| 绥芬河市| 毕节市| 鄂州市| 五大连池市| 郴州市| 衡阳市| 临颍县| 同江市| 马鞍山市| 松滋市| 峨边| 邵阳县| 河东区| 温泉县| 肇州县| 岳阳市| 鹤山市| 贞丰县| 宁河县| 临武县| 兖州市| 旬邑县| 辽阳县| 闽侯县| 沾化县| 赤峰市| 石台县| 十堰市| 寿宁县| 黔江区|