找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interfacial Wave Theory of Pattern Formation; Selection of Dendrit Jian-Jun Xu Book 19981st edition Springer-Verlag Berlin Heidelberg 1998

[復制鏈接]
樓主: Embolism
21#
發(fā)表于 2025-3-25 06:52:54 | 只看該作者
22#
發(fā)表于 2025-3-25 08:50:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:10:15 | 只看該作者
Springer Series in Synergeticshttp://image.papertrans.cn/i/image/470964.jpg
24#
發(fā)表于 2025-3-25 16:34:35 | 只看該作者
Unidirectional Solidification and the Mullins-Sekerka Instability,Before we begin the study of dendritic growth, it is appropriate to examine a simple case first: the instability of a planar interface in unidirectional solidification. Mullins and Sekerka were the first, in 1963, to perform a systematic analysis of this system. Their linear stability analysis is now called the . [2.1].
25#
發(fā)表于 2025-3-25 20:21:00 | 只看該作者
Steady State of Dendrite Growth with Zero Surface Tension and Its Regular Perturbation Expansion,For zero surface tension (. = 0) and arbitrary undercooling, the three-dimensional system (3.13)–(3.25) allows the following steady similarity solution.where ..(.) is the exponential function defined as.(see [4.1]). This solution was first found by Ivantsov in 1946 (cf. [4.2] and [4.3]) and is now called the Ivantsov solution.
26#
發(fā)表于 2025-3-26 02:58:17 | 只看該作者
27#
發(fā)表于 2025-3-26 05:53:35 | 只看該作者
The Steady State for Dendrite Growth with Nonzero Surface Tension, solution itself. How to specify the steady state solution in dendrite growth is an important subject which must be approached with great caution. In the literature, many researchers have looked for the classic, steady needle solution for dendrite growth. Such efforts have not been successful for the case of isotropic surface tension.
28#
發(fā)表于 2025-3-26 09:38:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:06:34 | 只看該作者
30#
發(fā)表于 2025-3-26 19:59:26 | 只看該作者
https://doi.org/10.1007/978-3-642-80435-9condensed matter; condensed matter physics; crystal; curvilinear coordinates; dendrite growth; eigenvalue
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 18:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江北区| 东阳市| 青浦区| 科技| 榕江县| 晋宁县| 安陆市| 嘉荫县| 峨边| 泰和县| 区。| 萝北县| 凤翔县| 济源市| 藁城市| 安溪县| 庆阳市| 桦川县| 镇宁| 桃园县| 公安县| 自治县| 博客| 安泽县| 青阳县| 叙永县| 黎城县| 新安县| 越西县| 阿克| 女性| 元氏县| 集贤县| 呼伦贝尔市| 肃南| 东方市| 屏东县| 积石山| 咸阳市| 罗江县| 宣恩县|