找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Theorem Proving; 8th International Co Mauricio Ayala-Rincón,César A. Mu?oz Conference proceedings 2017 Springer International P

[復(fù)制鏈接]
樓主: Espionage
11#
發(fā)表于 2025-3-23 10:25:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:38 | 只看該作者
Formalization of the Lindemann-Weierstrass Theorem,ve forms of the fundamental theorem of symmetric polynomials. This formalization uses mainly the Mathcomp library for the part relying on algebra, and the Coquelicot library and the Coq standard library of real numbers for the calculus part.
14#
發(fā)表于 2025-3-24 02:09:48 | 只看該作者
CompCertS: A Memory-Aware Verified C Compiler Using Pointer as Integer Semantics,s available..The whole proof of . is a significant proof-effort and we highlight the crux of the novel proofs of 12 passes of the back-end and a challenging proof of an essential optimising pass of the front-end.
15#
發(fā)表于 2025-3-24 03:52:49 | 只看該作者
Formal Verification of a Floating-Point Expansion Renormalization Algorithm, operation. It is a critical step needed to ensure that the resulted expansion has the same property as the input one, and is more “compressed”. The formal proof uncovered several gaps in the pen-and-paper proof and gives the algorithm a very high level of guarantee.
16#
發(fā)表于 2025-3-24 06:31:15 | 只看該作者
FoCaLiZe and Dedukti to the Rescue for Proof Interoperability,, we rely on the structuring features offered by FoCaLiZe, in particular parameterized modules and inheritance to build a formal library of transfer theorems called MathTransfer. We finally illustrate this methodology on the Sieve of Eratosthenes, which we prove correct using HOL and Coq in combination.
17#
發(fā)表于 2025-3-24 13:00:38 | 只看該作者
Conference proceedings 2017, in September 2017...The 28 full papers, 2 rough diamond papers, and 3 invited talk papers presented were carefully reviewed and selected from 65 submissions. The topics range from theoretical foundations to implementation aspects and applications in program verification, security and formalization
18#
發(fā)表于 2025-3-24 17:47:38 | 只看該作者
19#
發(fā)表于 2025-3-24 22:33:57 | 只看該作者
Automating Formalization by Statistical and Semantic Parsing of Mathematics,We show that our learning method allows efficient use of large amount of contextual information, which in turn significantly boosts the precision of the statistical parsing and also makes it more efficient. This leads to a large improvement of our first results in parsing theorems from the Flyspeck corpus.
20#
發(fā)表于 2025-3-25 02:19:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 10:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方城县| 贺兰县| 南投市| 收藏| 灵山县| 紫云| 永泰县| 枝江市| 天镇县| 伊宁市| 吉木萨尔县| 江陵县| 扎鲁特旗| 兰西县| 武穴市| 四平市| 莆田市| 兰坪| 广德县| 纳雍县| 青冈县| 封丘县| 丰台区| 资阳市| 滨州市| 中方县| 惠东县| 梅州市| 芷江| 北票市| 丰县| 垫江县| 巢湖市| 兴业县| 通江县| 邓州市| 临海市| 祥云县| 乌拉特前旗| 清丰县| 聂拉木县|