找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Theorem Proving; 4th International Co Sandrine Blazy,Christine Paulin-Mohring,David Pich Conference proceedings 2013 Springer-V

[復(fù)制鏈接]
樓主: 快樂
21#
發(fā)表于 2025-3-25 05:21:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:40:12 | 只看該作者
Light-Weight Containers for Isabelle: Efficient, Extensible, Nestableefinement during code generation, our light-weight framework is flexible, extensible, and easy to use. To support arbitrary nesting of containers, we devise an efficient linear order on sets that can even compare complements and non-complements. Our evaluation shows that it is both efficient and usa
23#
發(fā)表于 2025-3-25 13:03:22 | 只看該作者
Mechanising Turing Machines and Computability Theory in Isabelle/HOLs and relate them to abacus machines and recursive functions. We “tie the know” between these three computational models by formalising a universal function and obtaining from it a universal Turing machine by our verified translation from recursive functions to abacus programs and from abacus progra
24#
發(fā)表于 2025-3-25 17:58:29 | 只看該作者
A Machine-Checked Proof of the Odd Order Theorem the . proof assistant. The formalized proof is constructive, and relies on nothing but the axioms and rules of the foundational framework implemented by .. To support the formalization, we developed a comprehensive set of reusable libraries of formalized mathematics, including results in finite gro
25#
發(fā)表于 2025-3-25 22:27:44 | 只看該作者
26#
發(fā)表于 2025-3-26 02:33:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:52 | 只看該作者
28#
發(fā)表于 2025-3-26 11:33:42 | 只看該作者
Mechanical Verification of SAT Refutations with Extended Resolutionof increasingly complex satisfiability (SAT) solver techniques, including those based on extended resolution. A common approach to assure the correctness of SAT solvers is to emit a proof of unsatisfiability when no solution is reported to exist. Contemporary proof checkers only check logical equiva
29#
發(fā)表于 2025-3-26 16:11:13 | 只看該作者
30#
發(fā)表于 2025-3-26 17:42:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峨县| 岫岩| 民和| 阿尔山市| 扎鲁特旗| 梁平县| 库尔勒市| 城步| 阿克苏市| 池州市| 靖边县| 陇川县| 蒙阴县| 伊宁县| 和平县| 黄大仙区| 礼泉县| 淮北市| 且末县| 钟祥市| 佛坪县| 鸡东县| 石嘴山市| 射洪县| 包头市| 长沙县| 佛教| 孙吴县| 洛扎县| 木兰县| 钟祥市| 城口县| 贵州省| 灵川县| 金湖县| 白沙| 买车| 邵阳市| 宕昌县| 天津市| 邵阳市|