找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Theorem Proving; 7th International Co Jasmin Christian Blanchette,Stephan Merz Conference proceedings 2016 Springer Internation

[復(fù)制鏈接]
樓主: Kennedy
31#
發(fā)表于 2025-3-27 00:58:24 | 只看該作者
32#
發(fā)表于 2025-3-27 04:19:10 | 只看該作者
Visual Theorem Proving with the Incredible Proof Machineort graphs, which is akin?to, but even more natural than, natural deduction. In particular, we describe a way to determine the scope of local assumptions and variables implicitly. Our practical classroom experience backs these claims.
33#
發(fā)表于 2025-3-27 06:29:45 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:06 | 只看該作者
35#
發(fā)表于 2025-3-27 13:36:41 | 只看該作者
https://doi.org/10.1007/978-3-319-43144-4distributed systems; formal security models; logic and verification; model checking; verification; comple
36#
發(fā)表于 2025-3-27 20:35:04 | 只看該作者
Proof Pearl: Bounding Least Common Multiples with TrianglesWe present a proof of the fact that .. This result has a standard proof . an integral, but our proof is purely number theoretic, requiring little more than list inductions. The proof is based on manipulations of a variant of Leibniz’s Harmonic Triangle, itself a relative of Pascal’s better-known Triangle.
37#
發(fā)表于 2025-3-27 22:54:19 | 只看該作者
A Formal Proof of Cauchy’s Residue TheoremWe present a formalization of Cauchy’s residue theorem and two of its corollaries: the argument principle and Rouché’s theorem. These results have applications to verify algorithms in computer algebra and demonstrate Isabelle/HOL’s complex analysis library.
38#
發(fā)表于 2025-3-28 04:07:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:21:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:47:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎川县| 中超| 梨树县| 河南省| 云和县| 新兴县| 鄂尔多斯市| 右玉县| 新竹市| 通海县| 溧阳市| 油尖旺区| 扬中市| 离岛区| 县级市| 舟山市| 芮城县| 大悟县| 莎车县| 武夷山市| 屏东市| 桐城市| 清涧县| 南开区| 随州市| 松潘县| 和硕县| 沂源县| 清新县| 景洪市| 嘉义县| 绍兴市| 石门县| 灵山县| 竹溪县| 双桥区| 红原县| 东阿县| 濮阳市| 抚州市| 耒阳市|