找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interactive Curve Modeling; With Applications to M. Sarfraz Textbook 2008 Springer-Verlag London 2008 CAE.CAM.Interpolation.Virtual Reality

[復(fù)制鏈接]
樓主: 支票
31#
發(fā)表于 2025-3-26 21:11:49 | 只看該作者
Multiresolution Framework for B-Splines, user wishes to edit the global shape of a complex object. Multiresolution representation is proposed as a solution to alleviate this problem. Various multiresolution methods are described for different B-spline models.
32#
發(fā)表于 2025-3-27 03:56:36 | 只看該作者
Visualization of Shaped Data by a Rational Cubic Spline,cheme has a unique representation. In addition to preserving the shape of positive, monotonic and convex data sets, it also possesses extra features to modify the shape of the design curve when desired. The degree of smoothness attained is C1.
33#
發(fā)表于 2025-3-27 05:57:32 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:25 | 只看該作者
Corner Detection for Curve Segmentation,ciently the corner points are located. Specifically, in the area of vectorizing planar images, contour segmentation is very often managed by locating the exact corner points. This leads to the piecewise solution of the problem.
35#
發(fā)表于 2025-3-27 14:53:03 | 只看該作者
ary material: Interactive curve modeling techniques and their applications are extremely useful inanumber ofacademicandindustrialsettings.Speci?cally, curvemodelingplays a signi?cant role in multidisciplinary problem solving. It is extremely useful in various situations like font design, designing o
36#
發(fā)表于 2025-3-27 20:21:43 | 只看該作者
Weighted Nu Splines,ne method. In addition, these weighted ν-splines also provide, as special cases, the weighted splines and the ν-splines. The method for evaluating these splines is suggested by a transformation to Bézier form.
37#
發(fā)表于 2025-3-28 01:08:19 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:04 | 只看該作者
39#
發(fā)表于 2025-3-28 06:57:19 | 只看該作者
40#
發(fā)表于 2025-3-28 14:30:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 大余县| 阳江市| 通州区| 南平市| 莱阳市| 巫山县| 城步| 景宁| 昌图县| 乌审旗| 陈巴尔虎旗| 墨玉县| 金平| 云阳县| 中山市| 大港区| 徐水县| 阿图什市| 万荣县| 岳普湖县| 白朗县| 华安县| 南澳县| 奇台县| 长泰县| 浏阳市| 肥西县| 赤水市| 柘城县| 遂宁市| 福州市| 茶陵县| 平顶山市| 禄丰县| 同江市| 双流县| 贵定县| 吴堡县| 普陀区| 乐昌市|