找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Intelligent Transport Systems for Everyone’s Mobility; Tsunenori Mine,Akira Fukuda,Shigemi Ishida Book 2019 Springer Nature Singapore Pte

[復(fù)制鏈接]
樓主: Corrugate
51#
發(fā)表于 2025-3-30 10:57:45 | 只看該作者
Automatic Extraction of Passing Scene Through Signalized Intersection from Event Data Recorder Durinre to stop at a red light are found out and are shown to the drivers from the video images of EDR. In order to detect ‘the failure to stop at a red light’ automatically from event data recorder images, our method aims to extract passing scenes through a signalized intersection. To extract passing sc
52#
發(fā)表于 2025-3-30 13:15:28 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:47 | 只看該作者
54#
發(fā)表于 2025-3-30 22:32:45 | 只看該作者
55#
發(fā)表于 2025-3-31 03:15:10 | 只看該作者
Prediction of Travel Time over Unstable Intervals Between Adjacent Bus Stops Using Historical Travel order to make decisions (e.g., postpone departure time at certain hours) and to reduce their waiting time at bus stops. Accurate predictions of bus travel time are necessary to know whether the travel time over target intervals between pairs of adjacent bus stops is stable or not. For this purpose,
56#
發(fā)表于 2025-3-31 06:49:07 | 只看該作者
Dynamic Arrival Time Estimation Model and Visualization Method for Bus Trafficonditions, number of passengers, and traffic signals. These factors often cause delays, and users may feel inconvenienced when waiting at a bus stop. Few studies have analyzed the relationship between operational situations and multiple different factors by visualization. Thus, we propose an arrival
57#
發(fā)表于 2025-3-31 13:15:57 | 只看該作者
58#
發(fā)表于 2025-3-31 15:57:53 | 只看該作者
Adaptive Traffic Signal Control Methods Based on Deep Reinforcement Learningeve effective and efficient traffic operations. Recently, due to significant progress in artificial intelligence, research has focused on machine learning-based frameworks of adaptive traffic signal control (ATSC). In particular, deep reinforcement learning (DRL) can be formulated as a model-free te
59#
發(fā)表于 2025-3-31 21:01:44 | 只看該作者
60#
發(fā)表于 2025-4-1 01:41:06 | 只看該作者
Architecture and Development of Agent-Based Unified Simulation Environment for ITS Services date, a variety of studies and developments that combine simulators and evaluate ITS services on the combined simulators have been conducted. In this paper, we propose a simulation environment called as Agent-based unified simulation environment (USE) for ITS services. To confirm the effect of ITS
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂水县| 泌阳县| 隆尧县| 盱眙县| 瓦房店市| 广汉市| 扬中市| 博湖县| 巴东县| 淮北市| 鄂托克前旗| 淮北市| 来宾市| 鹤山市| 新建县| 枣强县| 衡阳县| 黄浦区| 淮阳县| 安溪县| 旬邑县| 桑日县| 石屏县| 广平县| 永顺县| 明溪县| 东海县| 汝城县| 吉木乃县| 龙陵县| 闵行区| 犍为县| 湖南省| 科尔| 土默特左旗| 威远县| 藁城市| 观塘区| 枣阳市| 鹤庆县| 长治市|