找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Transport Systems for Everyone’s Mobility; Tsunenori Mine,Akira Fukuda,Shigemi Ishida Book 2019 Springer Nature Singapore Pte

[復(fù)制鏈接]
樓主: Corrugate
51#
發(fā)表于 2025-3-30 10:57:45 | 只看該作者
Automatic Extraction of Passing Scene Through Signalized Intersection from Event Data Recorder Durinre to stop at a red light are found out and are shown to the drivers from the video images of EDR. In order to detect ‘the failure to stop at a red light’ automatically from event data recorder images, our method aims to extract passing scenes through a signalized intersection. To extract passing sc
52#
發(fā)表于 2025-3-30 13:15:28 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:47 | 只看該作者
54#
發(fā)表于 2025-3-30 22:32:45 | 只看該作者
55#
發(fā)表于 2025-3-31 03:15:10 | 只看該作者
Prediction of Travel Time over Unstable Intervals Between Adjacent Bus Stops Using Historical Travel order to make decisions (e.g., postpone departure time at certain hours) and to reduce their waiting time at bus stops. Accurate predictions of bus travel time are necessary to know whether the travel time over target intervals between pairs of adjacent bus stops is stable or not. For this purpose,
56#
發(fā)表于 2025-3-31 06:49:07 | 只看該作者
Dynamic Arrival Time Estimation Model and Visualization Method for Bus Trafficonditions, number of passengers, and traffic signals. These factors often cause delays, and users may feel inconvenienced when waiting at a bus stop. Few studies have analyzed the relationship between operational situations and multiple different factors by visualization. Thus, we propose an arrival
57#
發(fā)表于 2025-3-31 13:15:57 | 只看該作者
58#
發(fā)表于 2025-3-31 15:57:53 | 只看該作者
Adaptive Traffic Signal Control Methods Based on Deep Reinforcement Learningeve effective and efficient traffic operations. Recently, due to significant progress in artificial intelligence, research has focused on machine learning-based frameworks of adaptive traffic signal control (ATSC). In particular, deep reinforcement learning (DRL) can be formulated as a model-free te
59#
發(fā)表于 2025-3-31 21:01:44 | 只看該作者
60#
發(fā)表于 2025-4-1 01:41:06 | 只看該作者
Architecture and Development of Agent-Based Unified Simulation Environment for ITS Services date, a variety of studies and developments that combine simulators and evaluate ITS services on the combined simulators have been conducted. In this paper, we propose a simulation environment called as Agent-based unified simulation environment (USE) for ITS services. To confirm the effect of ITS
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江阴市| 饶平县| 通州市| 青川县| 开鲁县| 米脂县| 太仓市| 延长县| 海口市| 秦安县| 清河县| 衡水市| 车险| 广南县| 盐边县| 长白| 嘉义县| 陇西县| 巴东县| 宜宾县| 庆阳市| 视频| 石屏县| 迁安市| 陈巴尔虎旗| 湘潭市| 安徽省| 饶平县| 太仆寺旗| 罗甸县| 平武县| 延安市| 民勤县| 凌源市| 宜兴市| 乐平市| 会宁县| 肥乡县| 怀仁县| 武隆县| 夏邑县|