找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems and Computing; Bing-Yuan Cao,Shu-Feng Wang,Yu-Bin Zhong Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Spouse
11#
發(fā)表于 2025-3-23 15:59:24 | 只看該作者
Shuyi Wang,Weize Zhang,Ziqi Zhong,Yongtao Li,Zhongyuan Peng
12#
發(fā)表于 2025-3-23 21:15:49 | 只看該作者
13#
發(fā)表于 2025-3-23 22:36:51 | 只看該作者
14#
發(fā)表于 2025-3-24 02:49:40 | 只看該作者
15#
發(fā)表于 2025-3-24 09:01:48 | 只看該作者
16#
發(fā)表于 2025-3-24 12:13:33 | 只看該作者
Linear Programming Subject to?Max-Product Fuzzy Relation Inequalities with?Discrete Variablese potential minimal solution, and expressed by 2. linear equations in 0-1 mixed variables and . inequalities. Then the original problem can converted into a 0-1 mixed-integer linear programming problem and then adopt to the branch-and-bound scheme to find optimal solution.
17#
發(fā)表于 2025-3-24 17:45:24 | 只看該作者
Fish Swarm Algorithm Based Reflecting Surface Adjustment Strategy for Radio Telescopesm can quickly escape from local extremes and improve the efficiency of iteration. A method to determine the ideal paraboloid is also proposed by using the coordinate system transformation, and a method to calculate the signal acceptance ratio is given to make the strategy more practical application.
18#
發(fā)表于 2025-3-24 21:11:55 | 只看該作者
19#
發(fā)表于 2025-3-25 03:09:26 | 只看該作者
Global Optimization for?the?Concave-Concave Multiplicative Programming with?Coefficienting problems through the successive refinement of a linear relaxation of feasible region and of the objective function. It has been proved that the algorithm possesses global convergence. Some numerical examples are given to illustrate validity of the proposed method.
20#
發(fā)表于 2025-3-25 05:09:24 | 只看該作者
Research on Cantonese Cultural and Creative Product Design Strategy Based on Fuzzy Kano Modelombined with the four quadrant model to rank the importance, the paper proposed corresponding design strategies for Cantonese cultural and creative products. The aim is to provide a theoretical basis and design basis for Cantonese cultural and creative product design and other tourism cultural and creative product designs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河池市| 江华| 贵阳市| 嘉鱼县| 衡水市| 堆龙德庆县| 东丽区| 壤塘县| 翁牛特旗| 巧家县| 迁西县| 登封市| 礼泉县| 新绛县| 东方市| 伊通| 琼中| 兴城市| 祁阳县| 祥云县| 万全县| 诸暨市| 田东县| 酒泉市| 西乌珠穆沁旗| 绥滨县| 汝州市| 德钦县| 灌阳县| 尼玛县| 永康市| 阜宁县| 太仆寺旗| 神池县| 巴里| 米易县| 德保县| 林西县| 陵川县| 三门峡市| 额敏县|