找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems and Computing; Bing-Yuan Cao,Shu-Feng Wang,Yu-Bin Zhong Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Spouse
11#
發(fā)表于 2025-3-23 15:59:24 | 只看該作者
Shuyi Wang,Weize Zhang,Ziqi Zhong,Yongtao Li,Zhongyuan Peng
12#
發(fā)表于 2025-3-23 21:15:49 | 只看該作者
13#
發(fā)表于 2025-3-23 22:36:51 | 只看該作者
14#
發(fā)表于 2025-3-24 02:49:40 | 只看該作者
15#
發(fā)表于 2025-3-24 09:01:48 | 只看該作者
16#
發(fā)表于 2025-3-24 12:13:33 | 只看該作者
Linear Programming Subject to?Max-Product Fuzzy Relation Inequalities with?Discrete Variablese potential minimal solution, and expressed by 2. linear equations in 0-1 mixed variables and . inequalities. Then the original problem can converted into a 0-1 mixed-integer linear programming problem and then adopt to the branch-and-bound scheme to find optimal solution.
17#
發(fā)表于 2025-3-24 17:45:24 | 只看該作者
Fish Swarm Algorithm Based Reflecting Surface Adjustment Strategy for Radio Telescopesm can quickly escape from local extremes and improve the efficiency of iteration. A method to determine the ideal paraboloid is also proposed by using the coordinate system transformation, and a method to calculate the signal acceptance ratio is given to make the strategy more practical application.
18#
發(fā)表于 2025-3-24 21:11:55 | 只看該作者
19#
發(fā)表于 2025-3-25 03:09:26 | 只看該作者
Global Optimization for?the?Concave-Concave Multiplicative Programming with?Coefficienting problems through the successive refinement of a linear relaxation of feasible region and of the objective function. It has been proved that the algorithm possesses global convergence. Some numerical examples are given to illustrate validity of the proposed method.
20#
發(fā)表于 2025-3-25 05:09:24 | 只看該作者
Research on Cantonese Cultural and Creative Product Design Strategy Based on Fuzzy Kano Modelombined with the four quadrant model to rank the importance, the paper proposed corresponding design strategies for Cantonese cultural and creative products. The aim is to provide a theoretical basis and design basis for Cantonese cultural and creative product design and other tourism cultural and creative product designs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博爱县| 北辰区| 方山县| 新泰市| 晋中市| 赤峰市| 通海县| 长阳| 安陆市| 凤阳县| 兰坪| 上高县| 韶关市| 宜君县| 嘉义市| 韩城市| 信阳市| 韶山市| 赞皇县| 廊坊市| 平塘县| 麟游县| 亚东县| 科技| 永顺县| 马山县| 如东县| 文登市| 社旗县| 双城市| 肇东市| 泗水县| 山阴县| 湘乡市| 望都县| 澄迈县| 镇雄县| 滦平县| 鲁甸县| 莫力| 集安市|