找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems and Applications; Proceedings of the 2 Kohei Arai Conference proceedings 2022 The Editor(s) (if applicable) and The Aut

[復制鏈接]
查看: 33054|回復: 70
樓主
發(fā)表于 2025-3-21 16:13:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligent Systems and Applications
副標題Proceedings of the 2
編輯Kohei Arai
視頻videohttp://file.papertrans.cn/471/470041/470041.mp4
概述Presents recent research in intelligent systems and applications.Gathers the proceedings of the Intelligent Systems Conference 2021 (IntelliSys 2021) held during September 2–3, 2021.Focuses on various
叢書名稱Lecture Notes in Networks and Systems
圖書封面Titlebook: Intelligent Systems and Applications; Proceedings of the 2 Kohei Arai Conference proceedings 2022 The Editor(s) (if applicable) and The Aut
描述.This book presents Proceedings of the 2021 Intelligent Systems Conference which is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The conference attracted a total of 496 submissions from many academic pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process. Of the total submissions, 180 submissions have been selected to be included in these proceedings. .As we witness exponential growth of computational intelligence in several directions and use of intelligent systems in everyday applications, this book is an ideal resource for reporting latest innovations and future of AI. The chapters include theory and application on all aspects of artificial intelligence, from classical to intelligent scope..We hope that readers find the book interestingand valuable; it provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research...?.
出版日期Conference proceedings 2022
關(guān)鍵詞Artificial Intelligence; Deep Learning; Neural Networks; Fuzzy Logic; Expert Systems; Computational Intel
版次1
doihttps://doi.org/10.1007/978-3-030-82193-7
isbn_softcover978-3-030-82192-0
isbn_ebook978-3-030-82193-7Series ISSN 2367-3370 Series E-ISSN 2367-3389
issn_series 2367-3370
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Intelligent Systems and Applications影響因子(影響力)




書目名稱Intelligent Systems and Applications影響因子(影響力)學科排名




書目名稱Intelligent Systems and Applications網(wǎng)絡公開度




書目名稱Intelligent Systems and Applications網(wǎng)絡公開度學科排名




書目名稱Intelligent Systems and Applications被引頻次




書目名稱Intelligent Systems and Applications被引頻次學科排名




書目名稱Intelligent Systems and Applications年度引用




書目名稱Intelligent Systems and Applications年度引用學科排名




書目名稱Intelligent Systems and Applications讀者反饋




書目名稱Intelligent Systems and Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:38 | 只看該作者
A Framework for Adaptive Mobile Ecological Momentary Assessments Using Reinforcement Learning,compliance is triggering mEMAs at inopportune moments. In this work, we propose a framework for implementing adaptive mEMAs using reinforcement learning (RL) to address the timing and context challenge, aiming to improve long term response compliance. To effectively model user state, we also propose
地板
發(fā)表于 2025-3-22 06:18:33 | 只看該作者
5#
發(fā)表于 2025-3-22 11:20:13 | 只看該作者
Multi-GPU-based Convolutional Neural Networks Training for Text Classification,e promising results in many NLP tasks such as text classification. However, training CNNs is a computationally intensive task, which limits their use in large scale applications. In this paper, we are focusing on the improvement of the training cost of the text classification CNN. We implement a dis
6#
發(fā)表于 2025-3-22 15:45:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:17:28 | 只看該作者
8#
發(fā)表于 2025-3-22 22:52:49 | 只看該作者
,A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle?Avoidance,rs. An important part focuses on obstacle detection and avoidance for UAVs navigating through an environment. Exploration in an unseen environment can be tackled with Deep Q-Network (DQN). However, value exploration with uniform sampling of actions may lead to redundant states, where often the envir
9#
發(fā)表于 2025-3-23 03:24:13 | 只看該作者
,Detecting and Fixing Nonidiomatic Snippets in Python Source Code with?Deep Learning,thm is divided into three subtasks: (i) the snippets are localized, then for each snippet (ii) the type of the nonidiomatic pattern, and (iii) the key variables are determined. The subtasks of localizing patterns and extracting variables are solved as Sequence Tagging tasks with LSTM networks. Deter
10#
發(fā)表于 2025-3-23 07:58:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
米易县| 永康市| 贵州省| 长汀县| 新宁县| 宁陵县| 刚察县| 霍邱县| 安仁县| 黔江区| 白朗县| 哈巴河县| 方城县| 湖口县| 孝义市| 玉屏| 琼中| 商南县| 临沧市| 班玛县| 茶陵县| 昌乐县| 乌鲁木齐市| 绩溪县| 南涧| 云和县| 武鸣县| 安平县| 凤冈县| 山阴县| 高邮市| 宣恩县| 张掖市| 梁平县| 大邑县| 东阳市| 东城区| 朝阳区| 青神县| 安康市| 彭水|