找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems Design and Applications; 16th International C Ana Maria Madureira,Ajith Abraham,Paulo Novais Conference proceedings 201

[復(fù)制鏈接]
樓主: FAULT
21#
發(fā)表于 2025-3-25 04:22:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:38 | 只看該作者
Conference proceedings 2017lligent systems, intelligent technologies, and applications. The papers included address a wide variety of themes ranging from theories to applications of intelligent systems and computational intelligence area and provide a valuable resource for students and researchers in academia and industry alike..?.
23#
發(fā)表于 2025-3-25 15:25:33 | 只看該作者
Agglomerative and Divisive Approaches to Unsupervised Learning in , Clusters,omerative (and three of its variants) and the other divisive, focusing on their performance in unsupervised learning tasks related to . clusters. Taking into account that the point sets considered are representative of gestalt clusters, the experiments show that the best results have been obtained when the agglomerative approach was used.
24#
發(fā)表于 2025-3-25 16:38:26 | 只看該作者
Radial Basis Function Neural Networks for Datasets with Missing Values,rk, the RBFNN is modified to deal with missing data. For that, the expected squared distance approach is used to compute the RBF Kernel. The proposed approach showed promising results when compared to standard missing data strategies.
25#
發(fā)表于 2025-3-25 21:56:06 | 只看該作者
Evaluation Method for an Adaptive Web Interface: GOMS Model,adaptive Web interface using a Bayesian networks approach. Then, a formal GOMS model approach was applied to the evaluation of our user interface for a specialized web application. The evaluation shows that the adaptive user interface was more comfortable than the fixed user interface.
26#
發(fā)表于 2025-3-26 00:55:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:03:53 | 只看該作者
28#
發(fā)表于 2025-3-26 10:21:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:52:12 | 只看該作者
Agglomerative and Divisive Approaches to Unsupervised Learning in , Clusters,lated to the desired level of granularity the partition should have. The work described in this paper approaches two hierarchical algorithms, one agglomerative (and three of its variants) and the other divisive, focusing on their performance in unsupervised learning tasks related to . clusters. Taki
30#
發(fā)表于 2025-3-26 18:14:18 | 只看該作者
Improving Imputation Accuracy in Ordinal Data Using Classification,ferences between instances with and without missing data. This is a particular problem with ordinal data, where for example a sample of a population may have all failed to answer a specific question in a questionnaire. The existing methods such as listwise deletion, mean attribute substitution, and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁陵县| 青铜峡市| 江城| 循化| 丹寨县| 进贤县| 汉阴县| 万源市| 大同县| 永昌县| 营山县| 五峰| 宜兴市| 威信县| 同德县| 合山市| 龙海市| 克山县| 平谷区| 建德市| 贵阳市| 尼玛县| 佛冈县| 恭城| 澎湖县| 刚察县| 若尔盖县| 札达县| 额尔古纳市| 滨州市| 蓬莱市| 玉山县| 温宿县| 平乐县| 大渡口区| 墨玉县| 遂昌县| 舞阳县| 盘锦市| 平顶山市| 乡城县|