找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems; 10th Brazilian Confe André Britto,Karina Valdivia Delgado Conference proceedings 2021 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 03:38:36 | 只看該作者
Intelligent Agents for Observation and Containment of Malicious Targets Organizationso remains the same, but the targets are structured as an organization to achieve the highest possible percentage of exploration of the environment and avoid robots. Targets can be organized as hierarchy, holarchy, team, and coalition, but they can also be unorganized. Our work seeks to apply compute
22#
發(fā)表于 2025-3-25 10:54:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:39:10 | 只看該作者
On the Impact of MDP Design for Reinforcement Learning Agents in Resource Managementof the impacts of design decisions on agent performance. In this paper, we compare and contrast four different MDP variations, discussing their computational requirements and impacts on agent performance by means of an empirical analysis. We conclude by showing that, in our experiments, when using M
24#
發(fā)表于 2025-3-25 19:15:45 | 只看該作者
25#
發(fā)表于 2025-3-25 20:27:48 | 只看該作者
A Graph-Based Crossover and Soft-Repair Operators for the Steiner Tree Problemand candidate solutions can include additional nodes called Steiner vertices. The problem is NP-complete, and optimization algorithms based on population metaheuristics, e.g., Genetic Algorithms (GAs), have been proposed. However, traditional recombination operators may produce inefficient solutions
26#
發(fā)表于 2025-3-26 04:14:11 | 只看該作者
A Modified NSGA-DO for Solving Multiobjective Optimization Problemsch aims to adjust the NSGA-DO selection operator to improve its diversity when applied to continuous multiobjective optimization problems. In order to validate this new Genetic Algorithm, we carried out a performance comparison among it and the genetic algorithms NSGA-II and NSGA-DO, regarding conti
27#
發(fā)表于 2025-3-26 06:54:55 | 只看該作者
An Enhanced TSP-Based Approach for Active Debris Removal Mission Planningof future operations. In this sense, Active Debris Removal (ADR) missions are required to clean up the space, deorbiting the debris with a spacecraft. ADR mission planning has been investigated in the literature by means of metaheuristic approaches, focused on maximizing the amount of removed debris
28#
發(fā)表于 2025-3-26 11:45:46 | 只看該作者
29#
發(fā)表于 2025-3-26 16:02:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 00:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃江县| 民权县| 洱源县| 天镇县| 巩义市| 易门县| 潮州市| 瑞安市| 额济纳旗| 阿坝县| 甘谷县| 庆元县| 彝良县| 越西县| 绥棱县| 镇安县| 南雄市| 漳州市| 黄浦区| 黄石市| 玉树县| 武安市| 民勤县| 农安县| 盱眙县| 任丘市| 常州市| 沧源| 乐平市| 博兴县| 保康县| 连州市| 土默特左旗| 宝山区| 卢湾区| 北流市| 长治市| 萝北县| 峨眉山市| 彭水| 华宁县|