找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Systems; 11th Brazilian Confe Jo?o Carlos Xavier-Junior,Ricardo Araújo Rios Conference proceedings 2022 The Editor(s) (if appli

[復制鏈接]
查看: 6317|回復: 61
樓主
發(fā)表于 2025-3-21 17:36:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligent Systems
副標題11th Brazilian Confe
編輯Jo?o Carlos Xavier-Junior,Ricardo Araújo Rios
視頻videohttp://file.papertrans.cn/470/469990/469990.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Intelligent Systems; 11th Brazilian Confe Jo?o Carlos Xavier-Junior,Ricardo Araújo Rios Conference proceedings 2022 The Editor(s) (if appli
描述The two-volume set LNAI 13653 and 13654 constitutes the refereed proceedings of the 11th Brazilian Conference on Intelligent Systems, BRACIS 2022, which took place in Campinas, Brazil, in November/December 2022.?.The 89 papers presented in the proceedings were carefully reviewed and selected from 225 submissions. The conference deals with theoretical aspects and applications of artificial and computational intelligence..
出版日期Conference proceedings 2022
關鍵詞artificial intelligence; computer networks; computer systems; computer vision; correlation analysis; data
版次1
doihttps://doi.org/10.1007/978-3-031-21689-3
isbn_softcover978-3-031-21688-6
isbn_ebook978-3-031-21689-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Intelligent Systems影響因子(影響力)




書目名稱Intelligent Systems影響因子(影響力)學科排名




書目名稱Intelligent Systems網(wǎng)絡公開度




書目名稱Intelligent Systems網(wǎng)絡公開度學科排名




書目名稱Intelligent Systems被引頻次




書目名稱Intelligent Systems被引頻次學科排名




書目名稱Intelligent Systems年度引用




書目名稱Intelligent Systems年度引用學科排名




書目名稱Intelligent Systems讀者反饋




書目名稱Intelligent Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:16:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:15:24 | 只看該作者
?ngelo Gregório Lovatto,Leliane Nunes de Barros,Denis D. Mauáundles. In Sec. 1 we shall give the basic definitions of the Hermitian analogues of the classical concepts of (Riemannian) metric, connection, and curvature. This is carried out in the context of differentiable C-vector bundles over a differentiable manifold . More specific formulas are obtained in
地板
發(fā)表于 2025-3-22 07:22:00 | 只看該作者
Arnaldo Vitor Barros da Silva,Luis Filipe Alves Pereiraolds. In Sec. 1 we shall present a discussion of the exterior algebra on a Hermitian vector space, introducing the fundamental 2-form and the Hodge *-operator associated with the Hermitian metric. In Sec. 2 we shall discuss and prove the principal results concerning harmonic forms on compact manifol
5#
發(fā)表于 2025-3-22 10:57:53 | 只看該作者
Igor Felipe de Camargo,Rodolfo Stoffel Antunes,Gabriel de O. Ramoss likely to need. The techniques described are presented with due regard for their theoretical basis; but the emphasis is on detailed discussion of the ideas of the differ- ential calculus and on the avoidance of false statements rather than on complete proofs of all results. It is a frequent experi
6#
發(fā)表于 2025-3-22 15:28:15 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:21:48 | 只看該作者
,Least-Squares Linear Dilation-Erosion Regressor Trained Using a?Convex-Concave Procedure,a convex combination of the composition of linear and morphological operators. They yield continuous piecewise linear functions and, thus, are universal approximators. Besides introducing the .-DER model, we formulate their training as a difference of convex (DC) programming problem. Precisely, an .
9#
發(fā)表于 2025-3-23 05:24:39 | 只看該作者
,Exploration Versus Exploitation in?Model-Based Reinforcement Learning: An Empirical Study,n used to select a policy that maximizes the objective function. Stochastic Value Gradient (SVG) methods perform the latter step by optimizing some estimate of the value function gradient. Despite showing promising empirical results, many implementations of SVG methods lack rigorous theoretical or e
10#
發(fā)表于 2025-3-23 06:07:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
民勤县| 安远县| 塔城市| 罗甸县| 容城县| 章丘市| 大名县| 古丈县| 通渭县| 招远市| 西盟| 韶关市| 潜山县| 龙胜| 广丰县| 略阳县| 新建县| 天等县| 天津市| 天峨县| 城步| 东阿县| 杨浦区| 江口县| 怀仁县| 三门峡市| 葵青区| 东丰县| 马鞍山市| 景德镇市| 淮滨县| 田东县| 江油市| 合阳县| 柞水县| 专栏| 滦平县| 阿拉善盟| 鹰潭市| 石家庄市| 南溪县|