找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Robotics and Applications; 16th International C Huayong Yang,Honghai Liu,Zhiyong Wang Conference proceedings 2023 The Editor(s)

[復(fù)制鏈接]
樓主: 掩飾
41#
發(fā)表于 2025-3-28 17:15:10 | 只看該作者
Large-Parallax Multi-camera Calibration Method for?Indoor Wide-Baseline Scenese multi-camera system by computing the optimal vanishing point through the extraction of orthogonal parallel lines within each camera’s view. This approach begins by extracting orthogonal parallel lines from the image to establish an accurate indoor 3D model. Furthermore, we incorporate the easily o
42#
發(fā)表于 2025-3-28 19:32:28 | 只看該作者
43#
發(fā)表于 2025-3-29 02:52:59 | 只看該作者
All-in-One Image Dehazing Based on?Attention Mechanisme attention mechanism, we use summation operations between the feature layer obtained after each attention operation and the input layer. Our model prioritizes attention to the dense haze region while maintaining overall brightness. Extensive experiments demonstrate that our method surpasses state-o
44#
發(fā)表于 2025-3-29 06:49:23 | 只看該作者
45#
發(fā)表于 2025-3-29 08:43:34 | 只看該作者
FairShare: An Incentive-Based Fairness-Aware Data Sharing Framework for?Federated Learning reliable outcomes. Experiments confirm the VCG-based mechanism’s truthfulness and Shapley Value’s fairness in payment allocation. In conclusion, FairShare addresses fairness challenges and fosters reliability in federated learning, facilitating dependable human-machine interactions. Implementing Fa
46#
發(fā)表于 2025-3-29 14:59:32 | 只看該作者
Combating Label Ambiguity with?Smooth Learning for?Facial Expression Recognitioniscriminative features. The estimated weights adapt to the sparse representation of central loss to selectively achieve intra-class compactness and inter-class separation of relevant information in the embedding space. The proposed ACD approach is superior compared to state-of-the-art
47#
發(fā)表于 2025-3-29 19:07:35 | 只看該作者
EMG Denoising Based on CEEMDAN-PE-WT Algorithmthreshold denoising is applied. Results show that EMG signals denoised by the proposed CEEMDAN-PE-WT algorithm perform a higher signal-to-noise ratio (SNR) and lower root mean square error (RMSE) compared with WT, EMD and CEEMDAN denoising methods.
48#
發(fā)表于 2025-3-29 21:11:47 | 只看該作者
AS-TransUnet: Combining ASPP and Transformer for Semantic Segmentationid module can obtain more receptive fields to obtain multi-scale information. In addition, we add an attention module to the decoder to help the model learn relevant features. To verify the performance and efficiency of the model, we conducted experiments on two common data sets and compared them wi
49#
發(fā)表于 2025-3-29 23:58:40 | 只看該作者
The Application of?Hybrid Dynamic Recurrent Fuzzy Neural Network in?Lower Limb Rehabilitation Functier then proposes a hybrid optimization learning method for the above network, which includes particle swarm optimization (PSO) and recursive least squares estimator (RLSE). PSO modifies the function parameters used to calculate the membership degree to optimize the fitness of fuzzy rules. However, t
50#
發(fā)表于 2025-3-30 05:54:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建湖县| 舞钢市| 五原县| 福海县| 建宁县| 潮安县| 黄陵县| 台南市| 湾仔区| 永胜县| 栖霞市| 五莲县| 高邑县| 天津市| 云龙县| 新化县| 许昌县| 晋城| 柯坪县| 凭祥市| 肇庆市| 兴化市| 定兴县| 大城县| 华蓥市| 土默特左旗| 无棣县| 吉隆县| 靖江市| 保康县| 黔西| 濉溪县| 屏东市| 阳新县| 沐川县| 泾源县| 辉县市| 连城县| 巧家县| 西安市| 井陉县|