找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Information Processing VIII; 9th IFIP TC 12 Inter Zhongzhi Shi,Sunil Vadera,Gang Li Conference proceedings 2016 IFIP Internatio

[復制鏈接]
樓主: ominous
51#
發(fā)表于 2025-3-30 08:20:22 | 只看該作者
52#
發(fā)表于 2025-3-30 14:18:21 | 只看該作者
53#
發(fā)表于 2025-3-30 19:16:52 | 只看該作者
54#
發(fā)表于 2025-3-30 21:12:11 | 只看該作者
A Hybrid Architecture Based on CNN for Image Semantic Annotationthe performance of image annotation, automatic image annotation has became an important research hotspots. In this paper, a hybrid approach is proposed to learn automatically semantic concepts of images, which is called Deep-CC. First we utilize the convolutional neural network for feature learning,
55#
發(fā)表于 2025-3-31 01:55:00 | 只看該作者
Convolutional Neural Networks Optimized by Logistic Regression Modelduces the application of two kinds of logistic regression classifier in the convolutional neural network. The first classifier is a logistic regression classifier, which is a classifier for two classification problems, but it can also be used for multi-classification problems. The second kind of cla
56#
發(fā)表于 2025-3-31 08:53:43 | 只看該作者
Event Detection with Convolutional Neural Networks for Forensic Investigationiques are not competent to extract information from digital artifacts collected for investigation. In this paper, we propose an improved framework based on a Convolutional neural network (CNN) to capture significant clues for event identification. The experiments show that our solution achieves exce
57#
發(fā)表于 2025-3-31 12:48:15 | 只看該作者
Boltzmann Machine and its Applications in Image Recognitionne. This paper built Weight uncertainty RBM model based on maximum likelihood estimation. And in the experimental section, this paper verified the effectiveness of the Weight uncertainty Deep Belief Network and the Weight uncertainty Deep Boltzmann Machine. In order to improve the images recognition
58#
發(fā)表于 2025-3-31 16:00:05 | 只看該作者
59#
發(fā)表于 2025-3-31 17:39:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
临沧市| 大关县| 儋州市| 闽侯县| 锡林浩特市| 尼木县| 获嘉县| 昌江| 湾仔区| 龙山县| 霍州市| 五莲县| 环江| 揭东县| 柞水县| 武城县| 甘谷县| 夏邑县| 彩票| 什邡市| 阿荣旗| 长寿区| 彰化市| 金溪县| 呈贡县| 宜君县| 疏附县| 五原县| 芜湖县| 正阳县| 桐乡市| 新安县| 德庆县| 利津县| 榕江县| 灵寿县| 金湖县| 乐业县| 炎陵县| 抚松县| 临朐县|