找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Information Processing VIII; 9th IFIP TC 12 Inter Zhongzhi Shi,Sunil Vadera,Gang Li Conference proceedings 2016 IFIP Internatio

[復(fù)制鏈接]
樓主: ominous
41#
發(fā)表于 2025-3-28 17:38:51 | 只看該作者
42#
發(fā)表于 2025-3-28 19:07:39 | 只看該作者
43#
發(fā)表于 2025-3-29 01:53:24 | 只看該作者
44#
發(fā)表于 2025-3-29 04:19:37 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:02 | 只看該作者
r Verbesserung der Lebensbedingungen in Stadtteilen mit besonderem Entwicklungsbedarf sollte das Programm einen Anreiz für eine verbesserte Kooperation verschiedener Ressorts setzen. Ein vergleichbarer Ansatz war zuvor in einigen Bundesl?ndern erprobt worden und brachte gro?e Erwartungen mit sich. M
46#
發(fā)表于 2025-3-29 12:35:18 | 只看該作者
An Attribute-Value Block Based Method of Acquiring Minimum Rule Sets: A Granulation Method to Constrguage and attribute-value block technique are introduced first. And then realization methods of rule reduction and rule set minimum are relatively systematically studied by using attribute-value block technique, and as a result effective algorithms of reducing decision rules and minimizing rule sets
47#
發(fā)表于 2025-3-29 19:14:16 | 只看該作者
Collective Interpretation and Potential Joint Information Maximizationmaximization has an effect to reduce the number of jointly fired neurons and then to stabilize the production of final representations. Then, the final connection weights are collectively interpreted by averaging weights produced by different data sets. The method was applied to the data set of rebe
48#
發(fā)表于 2025-3-29 22:06:39 | 只看該作者
A Novel Locally Multiple Kernel k-means Based on Similaritynel methods, the scale parameter of Gaussian kernel is usually searched in a number of candidate values of the parameter and the best is selected. In this paper, a novel multiple kernel k-means algorithm is proposed based on similarity measure. Our similarity measure meets the requirements of the cl
49#
發(fā)表于 2025-3-30 01:24:08 | 只看該作者
50#
發(fā)表于 2025-3-30 07:16:27 | 只看該作者
Application of Manifold Learning to Machinery Fault Diagnosis method to diagnose mechanical fault. Manifold Learning is widely used to extract the non-linear structure within the data and could do the dimensionality reduction of high-dimensional signal. Therefore manifold learning is employed to diagnose the machinery fault. The feature space is constructed b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南郑县| 大同县| 嘉善县| 新平| 阿坝县| 家居| 集安市| 鱼台县| 邓州市| 湖北省| 炎陵县| 贵定县| 林州市| 青龙| 乌兰察布市| 海门市| 平和县| 三江| 应用必备| 滕州市| 兴安县| 通江县| 房产| 汕头市| 娄底市| 利津县| 上林县| 沙河市| 武定县| 精河县| 贵港市| 牡丹江市| 手游| 辉南县| 布拖县| 同江市| 达孜县| 弥渡县| 龙江县| 星座| 龙江县|