找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint; Mark K. Hinders Book 2020 The Editor(s) (if appl

[復(fù)制鏈接]
查看: 41523|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:34:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint
編輯Mark K. Hinders
視頻videohttp://file.papertrans.cn/470/469667/469667.mp4
概述Presents the dynamic wavelet fingerprint technique of identifying machine learning features.Discusses numerous real-world applications, including in the medical, vehicle and wireless technology.Struct
圖書(shū)封面Titlebook: Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint;  Mark K. Hinders Book 2020 The Editor(s) (if appl
描述.This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means.?.Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint. begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader’s area of interest, or read together to provide a comprehensive overview of the topic.?.Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autono
出版日期Book 2020
關(guān)鍵詞Pattern Classification; Wavelet Fingerprints; Lamb Waves; Ultrasound; Radio Frequency Identification; Aut
版次1
doihttps://doi.org/10.1007/978-3-030-49395-0
isbn_softcover978-3-030-49397-4
isbn_ebook978-3-030-49395-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint影響因子(影響力)




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint影響因子(影響力)學(xué)科排名




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint被引頻次




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint被引頻次學(xué)科排名




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint年度引用




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint年度引用學(xué)科排名




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint讀者反饋




書(shū)目名稱Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:05 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:18 | 只看該作者
978-3-030-49397-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 11:54:36 | 只看該作者
Classification of RFID Tags with Wavelet Fingerprinting,lected for a variety of reader frequencies, tag orientations, and ambient conditions, and pattern classification techniques are applied to automatically identify these unique RF signatures. We show that identically programmed RFID tags can be distinguished using features generated from DWFP representations of the raw RF signals.
6#
發(fā)表于 2025-3-22 16:41:18 | 只看該作者
uding in the medical, vehicle and wireless technology.Struct.This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical
7#
發(fā)表于 2025-3-22 21:03:08 | 只看該作者
Book 2020r machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means.?.Intellige
8#
發(fā)表于 2025-3-22 22:24:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:40 | 只看該作者
Automatic Detection of Flaws in Recorded Music,ly detect time-localized clicks, pops, and crackles in both cylinders and digital recordings. We also found that while other extra-musical noises, such as coughing, did not leave a traceable mark on the fingerprint, they were distinguishable from samples without the error.
10#
發(fā)表于 2025-3-23 06:55:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 10:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民权县| 蕉岭县| 岑溪市| 津南区| 英德市| 屏南县| 乌兰浩特市| 宕昌县| 漳州市| 冕宁县| 射洪县| 新建县| 永善县| 漳浦县| 岳池县| 保德县| 仁化县| 根河市| 桐城市| 钟祥市| 南投县| 莱阳市| 拉萨市| 甘南县| 武汉市| 云林县| 兰溪市| 安龙县| 安图县| 博爱县| 治多县| 隆林| 五大连池市| 合阳县| 农安县| 涡阳县| 津市市| 鹤壁市| 东方市| 永登县| 和田县|