找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Distributed Computing XV; Lars Braubach,Kai Jander,Costin B?dic? Conference proceedings 2023 The Editor(s) (if applicable) and

[復制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 11:37:06 | 只看該作者
12#
發(fā)表于 2025-3-23 16:30:54 | 只看該作者
13#
發(fā)表于 2025-3-23 21:04:23 | 只看該作者
14#
發(fā)表于 2025-3-23 22:14:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:15 | 只看該作者
Proof-of-Concept (PoC) Biometric-Based Decentralized Digital Identifiersa of the user’s own face, which is cryptographically encrypted (PKI-less infrastructure), stored, and decrypted when necessary at both on-chain and off-chain level. Data recording, storage, and access at the on-chain level are provided by smart-contract functions.
16#
發(fā)表于 2025-3-24 08:55:21 | 只看該作者
Towards an?Online Multilingual Tool for Automated Conceptual Database Design a UML class diagram. It implements the entire process through the orchestration of web services, whereby some core functionalities are carried out by external services. The tool usage is illustrated with examples of automatic generation of a conceptual database model from the text represented in different natural languages.
17#
發(fā)表于 2025-3-24 12:38:32 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:24 | 只看該作者
Conference proceedings 2023 computing and intelligent systems. It includes contributions in machine learning, distributed systems & agents, text- and research-centric applications, social systems, and smart cities.. .It was written by leading experts in the field, who presented their work as part of the 15th International Sym
19#
發(fā)表于 2025-3-24 21:34:21 | 只看該作者
Dynamic Management of?Distributed Machine Learning Projectslity, and is able to change parts of the model through an optimization module, thus allowing a model to evolve over time as the data changes. This paper describes its generic architecture, details the implementation of the first modules, and provides a first validation.
20#
發(fā)表于 2025-3-25 02:50:45 | 只看該作者
Real-Time Traffic Prediction Using Distributed Deep Learning Based Multivariate Time-Series Modelstivariate approach using feature extraction techniques to increase the performance of the model. Second, we perform a comparative experimental study to evaluate different models, identifying the most effective component. Models are built on distributed and parallel computing platforms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石狮市| 柘荣县| 德安县| 永州市| 老河口市| 湘潭市| 伊春市| 额尔古纳市| 忻城县| 沁水县| 曲沃县| 丰台区| 邯郸县| 涡阳县| 兴安县| 饶平县| 衡东县| 香港| 大荔县| 淮北市| 德江县| 道孚县| 金寨县| 山东省| 元谋县| 分宜县| 郸城县| 宿松县| 独山县| 合阳县| 砚山县| 贵德县| 连云港市| 商南县| 阜宁县| 望谟县| 绥江县| 星子县| 珠海市| 土默特右旗| 包头市|