找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning -- IDEAL 2014; 15th International C Emilio Corchado,José A. Lozano,Hujun Yin Conference

[復(fù)制鏈接]
樓主: Malevolent
11#
發(fā)表于 2025-3-23 13:03:39 | 只看該作者
Diversified Random Forests Using Random Subspaces,, giving a weight to each subspace according to its predictive power, and using this weight in majority voting. Experimental study on 15 real datasets showed favourable results, demonstrating the potential of the proposed method.
12#
發(fā)表于 2025-3-23 17:11:40 | 只看該作者
Multi-step Forecast Based on Modified Neural Gas Mixture Autoregressive Model,g patterns and its suitability for various step-ahead predictions. Experimental results on several financial time series and benchmark data demonstrate the effectiveness of proposed method and markedly improvement performances over many existing neural networks.
13#
發(fā)表于 2025-3-23 21:50:18 | 只看該作者
LBP and Machine Learning for Diabetic Retinopathy Detection, patterns (LBP) to extract local features, while in the second stage, we have applied artificial neural networks, random forest and support vector machines for the detection task. Preliminary results show that random forest was the best classifier with 97.46% of accuracy, using a data set of 71 images.
14#
發(fā)表于 2025-3-24 02:11:33 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:44 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:23:08 | 只看該作者
Object-Neighbourhood Clustering Ensemble Method,tasets. The results show that our ensemble method outperforms the co-association method, when the Average linkage is used. Furthermore, the results show that our ensemble method is more accurate than the baseline algorithm, and this indicates that the clustering ensemble method is more consistent and reliable than a single clustering algorithm.
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:22:32 | 只看該作者
20#
發(fā)表于 2025-3-24 23:48:24 | 只看該作者
0302-9743 optimization, regression, classification, clustering, biological data processing, text processing, and image/video analysis.978-3-319-10839-1978-3-319-10840-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫阳县| 朝阳市| 嵊泗县| 襄垣县| 通城县| 磐安县| 仁化县| 临颍县| 镇江市| 通山县| 迁安市| 武强县| 泾源县| 库伦旗| 金湖县| 文山县| 泽库县| 印江| 河池市| 墨玉县| 松潘县| 新民市| 阿勒泰市| 安多县| 遂溪县| 咸宁市| 闵行区| 抚宁县| 沈阳市| 无为县| 鄂托克前旗| 若尔盖县| 招远市| 历史| 博兴县| 平武县| 勐海县| 高雄县| 德庆县| 垫江县| 太白县|