找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning - IDEAL 2009; 10th International C Emilio Corchado,Hujun Yin Conference proceedings 200

[復(fù)制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 12:48:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:59:38 | 只看該作者
13#
發(fā)表于 2025-3-23 18:38:40 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:16 | 只看該作者
SCIS: Combining Instance Selection Methods to Increase Their Effectiveness over a Wide Range of Domahis area, but none of them consistently outperforms the others over a wide range of domains. In this paper we present a set of measures to characterize the databases, as well as a new algorithm that uses these measures and, depending on the data characteristics, it applies the method or combination
15#
發(fā)表于 2025-3-24 04:42:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:28:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:57:57 | 只看該作者
Nearest Neighbor Classification by Relearningver, improving performance of the classifier is still attractive to cope with the high accuracy processing. A tolerant rough set is considered as a basis of the classification of data. The data classification is realized by applying the kNN with distance function. To improve the classification accur
18#
發(fā)表于 2025-3-24 16:14:52 | 只看該作者
Integrating Rough Set and Genetic Algorithm for Negative Rule Extraction ?. →?.. By integrating rough set theory and genetic algorithm, we propose a coverage matrix based on rough set to interpret the solution space and then transform the negative rule extraction into set cover problem which can be solved by genetic algorithm. We also develop a rule extraction system ba
19#
發(fā)表于 2025-3-24 21:04:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:51:03 | 只看該作者
Lazy Classification Using an Optimized Instance-Based Learnercurrently available for performing classification, among which decision trees and artificial neural networks. In this article we describe the implementation of a new lazy classification model called similarity classifier. Given an out-of-sample instance, this model predicts its class by finding the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投县| 广丰县| 遵义县| 蒲城县| 常宁市| 天津市| 乡城县| 山东省| 绵竹市| 紫阳县| 浠水县| 偃师市| 剑阁县| 太康县| 曲水县| 邓州市| 信宜市| 榕江县| 晋江市| 呼和浩特市| 拉萨市| 信阳市| 涿鹿县| 东乡族自治县| 墨脱县| 静宁县| 中山市| 军事| 普洱| 城口县| 新绛县| 湾仔区| 汾西县| 宣恩县| 安徽省| 博客| 海阳市| 玛沁县| 株洲县| 定兴县| 横山县|