找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Data Engineering and Automated Learning - IDEAL 2009; 10th International C Emilio Corchado,Hujun Yin Conference proceedings 200

[復(fù)制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 12:48:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:59:38 | 只看該作者
13#
發(fā)表于 2025-3-23 18:38:40 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:16 | 只看該作者
SCIS: Combining Instance Selection Methods to Increase Their Effectiveness over a Wide Range of Domahis area, but none of them consistently outperforms the others over a wide range of domains. In this paper we present a set of measures to characterize the databases, as well as a new algorithm that uses these measures and, depending on the data characteristics, it applies the method or combination
15#
發(fā)表于 2025-3-24 04:42:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:28:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:57:57 | 只看該作者
Nearest Neighbor Classification by Relearningver, improving performance of the classifier is still attractive to cope with the high accuracy processing. A tolerant rough set is considered as a basis of the classification of data. The data classification is realized by applying the kNN with distance function. To improve the classification accur
18#
發(fā)表于 2025-3-24 16:14:52 | 只看該作者
Integrating Rough Set and Genetic Algorithm for Negative Rule Extraction ?. →?.. By integrating rough set theory and genetic algorithm, we propose a coverage matrix based on rough set to interpret the solution space and then transform the negative rule extraction into set cover problem which can be solved by genetic algorithm. We also develop a rule extraction system ba
19#
發(fā)表于 2025-3-24 21:04:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:51:03 | 只看該作者
Lazy Classification Using an Optimized Instance-Based Learnercurrently available for performing classification, among which decision trees and artificial neural networks. In this article we describe the implementation of a new lazy classification model called similarity classifier. Given an out-of-sample instance, this model predicts its class by finding the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 03:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安陆市| 余江县| 鹿邑县| 康马县| 北票市| 安图县| 云浮市| 绩溪县| 三穗县| 定襄县| 锡林浩特市| 微博| 吉首市| 当雄县| 九龙坡区| 蚌埠市| 绥中县| 清新县| 本溪| 顺平县| 女性| 搜索| 宁乡县| 新平| 敖汉旗| 桃江县| 南安市| 乐亭县| 连州市| 新建县| 莱阳市| 郑州市| 昌宁县| 玉屏| 斗六市| 乡宁县| 垫江县| 台前县| 彭阳县| 江永县| 开封市|