找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing Theories and Application; 15th International C De-Shuang Huang,Vitoantonio Bevilacqua,Prashan Pre Conference proceedi

[復制鏈接]
樓主: 夾子
11#
發(fā)表于 2025-3-23 13:17:54 | 只看該作者
12#
發(fā)表于 2025-3-23 14:45:40 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:15:26 | 只看該作者
A Deep Learning Model for Multi-label Classification Using Capsule Networks,s is much larger than the number of single-labeled images, which means that the study of multi-label image classification is more important. Most of the published network for multi-label image classification uses a CNN with a sigmoid layer, which is different from the single-label classification net
15#
發(fā)表于 2025-3-24 05:16:31 | 只看該作者
16#
發(fā)表于 2025-3-24 10:06:15 | 只看該作者
Combining LSTM Network Model and Wavelet Transform for Predicting Self-interacting Proteins,tention to the development of approaches for the prediction of protein interactions and functions from sequences. In addition, elucidation of the self-interacting proteins (SIPs) play significant roles in the understanding of cellular process and cell functions. This work explored the use of deep le
17#
發(fā)表于 2025-3-24 11:26:04 | 只看該作者
Coarse-to-Fine Supervised Descent Method for Face Alignment,res a large amount of training samples to learn the descent directions and get the corresponding regressors. Then in the test phase, it uses the corresponding regressors to estimate the descent directions and locate the facial landmarks. However, when the facial expression or direction changes too m
18#
發(fā)表于 2025-3-24 16:56:52 | 只看該作者
Prediction of Chemical Oxygen Demand in Sewage Based on Support Vector Machine and Neural Network,d model based on support vector machine and neural network is proposed to predict effluent COD. It can reduce the influence of local optimum on the global scope so as to improve the accuracy of prediction. Firstly, the sample data are divided into two categories by support vector machine. Then the B
19#
發(fā)表于 2025-3-24 22:22:07 | 只看該作者
Relaxed 2-D Principal Component Analysis by Lp Norm for Face Recognition,, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optim
20#
發(fā)表于 2025-3-25 03:09:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
扶风县| 江油市| 屏东市| 鄂托克旗| 定边县| 江山市| 南安市| 措美县| 镶黄旗| 宜昌市| 庄浪县| 七台河市| 南郑县| 合川市| 屯门区| 株洲县| 东乡县| 南郑县| 新晃| 漳平市| 青龙| 高安市| 屯留县| 民勤县| 望城县| 安陆市| 开阳县| 高雄县| 马关县| 东辽县| 永仁县| 化州市| 昆明市| 腾冲县| 旬阳县| 道孚县| 拉萨市| 从江县| 台江县| 杭锦后旗| 石泉县|