找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Computing Methodologies; 14th International C De-Shuang Huang,M. Michael Gromiha,Abir Hussain Conference proceedings 2018 Sprin

[復(fù)制鏈接]
查看: 24659|回復(fù): 68
樓主
發(fā)表于 2025-3-21 16:06:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Intelligent Computing Methodologies
副標(biāo)題14th International C
編輯De-Shuang Huang,M. Michael Gromiha,Abir Hussain
視頻videohttp://file.papertrans.cn/470/469458/469458.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Intelligent Computing Methodologies; 14th International C De-Shuang Huang,M. Michael Gromiha,Abir Hussain Conference proceedings 2018 Sprin
描述.This book constitutes - in conjunction with the?two-volume set LNCS 10954 and LNCS 10955?- the refereed?proceedings of the 14th International Conference on Intelligent Computing, ICIC 2018, held in Wuhan, China, in August 2018. The?275 full papers and 72 short papers of the three proceedings volumes were carefully reviewed and selected from 632 submissions.?.The papers are organized in topical sections such as?Evolutionary Computation and Learning; Neural Networks; Pattern Recognition; Image Processing; Information Security; Virtual Reality and Human-Computer Interaction; Business Intelligence and Multimedia Technology; Biomedical Informatics Theory and Methods; Swarm Intelligence and Optimization; Natural Computing; Quantum Computing; Intelligent Computing in Computer Vision; Fuzzy Theory and Algorithms; Machine Learning; Systems Biology; Intelligent Systems and Applications for Bioengineering; Evolutionary Optimization: Foundations and Its Applications to Intelligent Data Analytics; Swarm Evolutionary Algorithms for Scheduling and Combinatorial Optimization; Swarm Intelligence and Applications in Combinatorial Qoptimization; Advances in Metaheuristic Optimization Algorithm; Adva
出版日期Conference proceedings 2018
關(guān)鍵詞supervised learning; unsupervised learning; reinforcement learning; semi-supervised learning; data minin
版次1
doihttps://doi.org/10.1007/978-3-319-95957-3
isbn_softcover978-3-319-95956-6
isbn_ebook978-3-319-95957-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Intelligent Computing Methodologies影響因子(影響力)




書目名稱Intelligent Computing Methodologies影響因子(影響力)學(xué)科排名




書目名稱Intelligent Computing Methodologies網(wǎng)絡(luò)公開度




書目名稱Intelligent Computing Methodologies網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Intelligent Computing Methodologies被引頻次




書目名稱Intelligent Computing Methodologies被引頻次學(xué)科排名




書目名稱Intelligent Computing Methodologies年度引用




書目名稱Intelligent Computing Methodologies年度引用學(xué)科排名




書目名稱Intelligent Computing Methodologies讀者反饋




書目名稱Intelligent Computing Methodologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:04 | 只看該作者
A Novel Many-Objective Optimization Algorithm Based on the Hybrid Angle-Encouragement Decomposition approaches, MOEA/AD-EBI is expected to effectively achieve a good balance between the convergence and the diversity when solving various kinds of MaOPs. Extensive experiments on some well-known benchmark problems validate the superiority of MOEA/AD-EBI over some state-of-the-art many-objective evolutionary algorithms.
板凳
發(fā)表于 2025-3-22 02:22:48 | 只看該作者
A Novel Multi-population Particle Swarm Optimization with Learning Patterns Evolved by Genetic Algoove diversity and exploration capabilities of populations. Meanwhile, the local search of PSO particles which start in the same position also evolved by GA independently maintains exploitation ability inside each sub population. Experimental results show that the accuracy is comparable and our method improves the convergence speed.
地板
發(fā)表于 2025-3-22 04:38:59 | 只看該作者
Improved Sub-gradient Algorithm for Solving the Lower Bound of No-Wait Flow-Shop Scheduling with Seem is designed and an improved subgradient algorithm is proposed to solve this problem. The algorithm simulation experiment shows the effectiveness of the algorithm proposed by the article about flow shop scheduling problem and can calculate a tight lower bound.
5#
發(fā)表于 2025-3-22 09:38:30 | 只看該作者
Cells Counting with Convolutional Neural Network,es to perform the final density prediction. We use three different cell counting benchmarks (MAE, MSE, GAME). Our method is tested on the cell pictures under microscope and shown to outperform the state of the art methods.
6#
發(fā)表于 2025-3-22 15:23:16 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:32 | 只看該作者
8#
發(fā)表于 2025-3-22 21:42:42 | 只看該作者
A Question Answering System Based on Deep Learning,tional neural network is adopted to obtain a one-dimensional sentence vector, which is used to replace the keyword vector for the answer candidate. Experimental results show that the proposed method outperforms the traditional keyword vector method.
9#
發(fā)表于 2025-3-23 02:55:51 | 只看該作者
10#
發(fā)表于 2025-3-23 07:44:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 榆社县| 瑞安市| 柳州市| 甘德县| 曲周县| 芒康县| 义马市| 抚宁县| 修文县| 三门县| 灵寿县| 安达市| 宜宾市| 南陵县| 昌吉市| 应城市| 疏附县| 泰宁县| 韶关市| 永平县| 高邑县| 买车| 临澧县| 孝感市| 安丘市| 阿勒泰市| 五峰| 喀喇沁旗| 三门县| 石泉县| 鱼台县| 宜良县| 东莞市| 宜昌市| 将乐县| 宜川县| 稷山县| 青浦区| 河东区| 都昌县|