找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Analysis: Fractional Inequalities and Approximations Expanded; George A. Anastassiou Book 2020 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: 娛樂某人
41#
發(fā)表于 2025-3-28 14:43:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:27:31 | 只看該作者
43#
發(fā)表于 2025-3-29 01:41:56 | 只看該作者
Fractional Conformable Iyengar Inequalities,Here we present Conformable fractional Iyengar type inequalities with respect to . norms, with .. The method is based on the right and left Conformable fractional Taylor’s formulae. See also [.].
44#
發(fā)表于 2025-3-29 05:51:38 | 只看該作者
45#
發(fā)表于 2025-3-29 08:57:37 | 只看該作者
46#
發(fā)表于 2025-3-29 12:28:02 | 只看該作者
,Low Order Riemann–Liouville Fractional Inequalities with Absent Initial Conditions,Here we present low order Riemann–Liouville left and right fractional inequalities without any initial conditions. These are of Opial, Poincaré, Sobolev and Hilbert–Pachpatte types. See also [.].
47#
發(fā)表于 2025-3-29 16:50:47 | 只看該作者
48#
發(fā)表于 2025-3-29 20:22:38 | 只看該作者
Multivariate Iyengar Inequalities for Radial Functions,olar coordinates in ., ., and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author’s related results into multivariate Iyengar inequalities. See also [.].
49#
發(fā)表于 2025-3-30 01:18:32 | 只看該作者
50#
發(fā)表于 2025-3-30 05:55:45 | 只看該作者
Negative Domain Local Fractional Inequalities,l fractional inequalities: Opial, Hilbert–Pachpatte, comparison of means, Poincare and Sobolev. The results are with respect to uniform and . norms, involving left and right Riemann–Liouville fractional derivatives. See also [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁峙县| 东山县| 洛川县| 兴海县| 原阳县| 绍兴市| 桐城市| 陈巴尔虎旗| 济源市| 台州市| 阿拉善左旗| 西乌珠穆沁旗| 高阳县| 西吉县| 日土县| 陆河县| 安国市| 贡嘎县| 白山市| 汉川市| 阿巴嘎旗| 屯留县| 四平市| 墨竹工卡县| 莱芜市| 巩留县| 安远县| 渭源县| 丰县| 仁化县| 疏勒县| 盖州市| 娄底市| 泸溪县| 昭觉县| 慈溪市| 霸州市| 赣榆县| 津南区| 梅州市| 大丰市|