找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligent Analysis: Fractional Inequalities and Approximations Expanded; George A. Anastassiou Book 2020 The Editor(s) (if applicable) a

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:27:47 | 只看該作者
32#
發(fā)表于 2025-3-27 01:53:59 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:10 | 只看該作者
34#
發(fā)表于 2025-3-27 10:58:47 | 只看該作者
General Ordinary Iyengar Inequalities,Here we present general Iyengar type inequalities with respect to . norms, with .. The method is based on the generalized Taylor’s formula. See also [.].
35#
發(fā)表于 2025-3-27 14:42:24 | 只看該作者
Caputo Fractional Iyengar Inequalities,Here we present Caputo fractional Iyengar type inequalities with respect to . norms, with .. The method is based on the right and left Caputo fractional Taylor’s formulae. See also [.].
36#
發(fā)表于 2025-3-27 21:34:25 | 只看該作者
Canavati Fractional Iyengar Inequalities,Here we present Canavati fractional Iyengar type inequalities with respect to . norms, with .. The method is based on the right and left Canavati fractional Taylor’s formulae. See also [.].
37#
發(fā)表于 2025-3-27 23:18:05 | 只看該作者
General Multivariate Iyengar Inequalities,Here we give a variety of general multivariate Iyengar type inequalities for not necessarily radial functions defined on the shell and ball.
38#
發(fā)表于 2025-3-28 05:37:06 | 只看該作者
Multidimensional Fractional Iyengar Inequalities for Radial Functions,Here we derive a variety of multivariate fractional Iyengar type inequalities for radial functions defined on the shell and ball.
39#
發(fā)表于 2025-3-28 06:50:27 | 只看該作者
40#
發(fā)表于 2025-3-28 13:29:49 | 只看該作者
Delta Time Scales Iyengar Inequalities,Here we give the necessary background on delta time scales approach. Then we present general related time scales delta Iyengar type inequalities for all basic norms. We finish with applications to specific time scales like . . and ., . See also [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泌阳县| 南昌市| 灵丘县| 民丰县| 罗源县| 横山县| 泰顺县| 丹阳市| 泰兴市| 宜兴市| 垦利县| 濉溪县| 云霄县| 嫩江县| 临江市| 龙游县| 拜泉县| 英吉沙县| 平罗县| 奉节县| 五华县| 常山县| 大竹县| 惠安县| 繁昌县| 秭归县| 沂源县| 佛坪县| 长沙县| 松桃| 蓬莱市| 绿春县| 崇阳县| 康马县| 阳东县| 油尖旺区| 淮阳县| 腾冲县| 周口市| 聊城市| 景宁|