找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intelligence Science IV; 5th IFIP TC 12 Inter Zhongzhi Shi,Yaochu Jin,Xiangrong Zhang Conference proceedings 2022 IFIP International Federa

[復(fù)制鏈接]
樓主: 懇求
21#
發(fā)表于 2025-3-25 06:00:03 | 只看該作者
DNM-SNN: Spiking Neural Network Based on Dual Network Modeles two key methods. Firstly, a dual model training method in training stage is proposed, which requires an additional auxiliary network same as the network used. Single model training is easy to fall into local optimal problems. By maintaining two networks, the same problem can be viewed from differ
22#
發(fā)表于 2025-3-25 10:17:28 | 只看該作者
A Deception Jamming Discrimination Method Based on Semi-supervised Learning with Generative Adversarsed method can achieve the same performance using less than 10% of the labelled data of existing algorithms. It reduces data requirements and enhances operational capabilities, which is better suited to real-world battlefield environments.
23#
發(fā)表于 2025-3-25 13:50:53 | 只看該作者
Fast Node Selection of?Networked Radar Based on?Transfer Reinforcement Learning nodes, transfer reinforcement learning is presented to fully leverage the previous knowledge. Experimental results show that our proposed method can quickly select the optimal and minimum radar nodes in a brief period, significantly improving the speed of radar node selection in the networked radar
24#
發(fā)表于 2025-3-25 18:12:08 | 只看該作者
Weakly Supervised Liver Tumor Segmentation Based on?Anchor Box and?Adversarial Complementary Learnin. Aiming at the problem that the current region mining method based on classification network is inaccurate and incomplete in object location, we use the Adversarial Complementary Learning module to make the network pay attention to more complete objects. We conduct analysis to validate the proposed
25#
發(fā)表于 2025-3-26 00:02:11 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:36:48 | 只看該作者
A Directed Search Many Objective Optimization Algorithm Embodied with?Kernel Clustering Strategy. Then, it improves them by the directed search method. DSMOA-KCS is compared with several existing state-of-the-art algorithms (NSGA-III, RSEA, and MOEADPas) on many-objective problems with 5 to 30 objective functions using the Inverted Generational Distance (IGD) performance metric. DSMOA-KCS eval
28#
發(fā)表于 2025-3-26 09:18:32 | 只看該作者
also um Festigkeitsrechnungen handelt, so braucht hier weder berücksichtigt zu werden, da? sich die Gr??e des Normaldruckes .. w?hrend des Eingriffs geringfügig ?ndert (Abschnitt 3) noch braucht die ebenfalls kleine Reibungskraft .. (Abschnitt 4) in Rechnung gestellt zu werden. Wir setzen also Zahnd
29#
發(fā)表于 2025-3-26 16:31:59 | 只看該作者
30#
發(fā)表于 2025-3-26 19:29:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武鸣县| 互助| 新安县| 岳普湖县| 西华县| 怀安县| 英德市| 鄄城县| 安庆市| 会泽县| 蓝山县| 迭部县| 鄂托克旗| 从化市| 麦盖提县| 邹城市| 霍城县| 青浦区| 宜都市| 奎屯市| 本溪市| 顺昌县| 麟游县| 佛冈县| 巴中市| 师宗县| 阳东县| 南乐县| 三门峡市| 金昌市| 磴口县| 颍上县| 共和县| 藁城市| 邛崃市| 山阳县| 临夏市| 武清区| 时尚| 搜索| 类乌齐县|