找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration on Infinite-Dimensional Surfaces and Its Applications; A. V. Uglanov Book 2000 Springer Science+Business Media Dordrecht 2000

[復(fù)制鏈接]
樓主: angiotensin-I
11#
發(fā)表于 2025-3-23 11:48:31 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/i/image/468887.jpg
12#
發(fā)表于 2025-3-23 14:27:07 | 只看該作者
13#
發(fā)表于 2025-3-23 19:09:03 | 只看該作者
14#
發(fā)表于 2025-3-24 02:03:42 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:43 | 只看該作者
A. V. Uglanovr..?.By exploring historical fluctuations over time—paying particular attention to how state-formations condition Muslim-Buddhist entanglements—the book shows the processual and relational aspects of religious identity constructions and Buddhist-Muslim interactions in Theravada Buddhist majority sta
16#
發(fā)表于 2025-3-24 07:04:13 | 只看該作者
17#
發(fā)表于 2025-3-24 12:09:31 | 只看該作者
A. V. Uglanovte-formations condition Muslim-Buddhist entanglements—the book shows the processual and relational aspects of religious identity constructions and Buddhist-Muslim interactions in Theravada Buddhist majority sta978-981-32-9886-6978-981-32-9884-2
18#
發(fā)表于 2025-3-24 16:27:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:04:10 | 只看該作者
rem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not ye978-90-481-5384-8978-94-015-9622-0
20#
發(fā)表于 2025-3-25 02:32:44 | 只看該作者
Integration on Infinite-Dimensional Surfaces and Its Applications
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 06:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香港| 宜兰县| 娄烦县| 扶绥县| 邛崃市| 岚皋县| 新竹县| 宁明县| 杭锦后旗| 高平市| 霍州市| 泽普县| 宾阳县| 寿宁县| 阿巴嘎旗| 哈巴河县| 凤庆县| 六枝特区| 望江县| 鄯善县| 交口县| 肇州县| 宣武区| 怀宁县| 乐清市| 崇信县| 西藏| 沁阳市| 介休市| 勃利县| 高淳县| 滦南县| 阿巴嘎旗| 南通市| 山西省| 平南县| 敖汉旗| 巴楚县| 白玉县| 布拖县| 和政县|