找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 17th International C Emmanuel Hebrard,Nysret Musli

[復(fù)制鏈接]
樓主: 有判斷力
41#
發(fā)表于 2025-3-28 18:05:00 | 只看該作者
An Exact CP Approach for the Cardinality-Constrained Euclidean Minimum Sum-of-Squares Clustering Proe problem to improve several aspects of previous constraint programming approaches: lower bounds, domain filtering, and branching. Computational experiments on benchmark instances taken from the literature confirm that our approach improves our solving capability over previously-proposed exact methods for this problem.
42#
發(fā)表于 2025-3-28 20:43:52 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:02 | 只看該作者
44#
發(fā)表于 2025-3-29 05:34:23 | 只看該作者
The HyperTrac Project: Recent Progress and Future Research Directions on Hypergraph Decompositionsd in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.
45#
發(fā)表于 2025-3-29 08:17:48 | 只看該作者
Local Search and Constraint Programming for a Real-World Examination Timetabling Problemboth a metaheuristic approach based on Simulated Annealing and a Constraint Programming model in MiniZinc. We compare the results of the metaheuristic approach (properly tuned) with the available MiniZinc back-ends on a large set of diverse real-world instances.
46#
發(fā)表于 2025-3-29 15:28:34 | 只看該作者
47#
發(fā)表于 2025-3-29 15:37:53 | 只看該作者
A Learning-Based Algorithm to Quickly Compute Good Primal Solutions for Stochastic Integer Programsear constraints in both stages and consistently provide near-optimal solutions. Our computing times are very competitive with those of general-purpose integer programming solvers to achieve a similar solution quality.
48#
發(fā)表于 2025-3-29 23:30:06 | 只看該作者
Reinforcement Learning for Variable Selection in a Branch and Bound AlgorithmTo our knowledge, it is the first time Reinforcement Learning has been used to fully optimise the branching strategy. Computational experiments show that our method is appropriate and able to generalise well to new instances.
49#
發(fā)表于 2025-3-30 01:07:54 | 只看該作者
50#
發(fā)表于 2025-3-30 04:09:48 | 只看該作者
Restarting Algorithms: Sometimes There Is Free Lunchcorporated in the base algorithm or argument. We will review restarts in various settings from continuous optimization, discrete optimization, and submodular function maximization where they have delivered impressive results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-4 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝应县| 贺兰县| 灵武市| 修文县| 双城市| 马鞍山市| 康马县| 藁城市| 大名县| 古浪县| 丰顺县| 仁怀市| 墨江| 新津县| 井冈山市| 南通市| 沙湾县| 龙门县| 外汇| 遂川县| 临潭县| 大余县| 西乌| 邓州市| 河间市| 高唐县| 城步| 本溪市| 精河县| 松阳县| 宁强县| 土默特右旗| 侯马市| 恩施市| 惠水县| 石景山区| 四会市| 平果县| 玉屏| 关岭| 青河县|