找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 17th International C Emmanuel Hebrard,Nysret Musli

[復(fù)制鏈接]
樓主: 有判斷力
41#
發(fā)表于 2025-3-28 18:05:00 | 只看該作者
An Exact CP Approach for the Cardinality-Constrained Euclidean Minimum Sum-of-Squares Clustering Proe problem to improve several aspects of previous constraint programming approaches: lower bounds, domain filtering, and branching. Computational experiments on benchmark instances taken from the literature confirm that our approach improves our solving capability over previously-proposed exact methods for this problem.
42#
發(fā)表于 2025-3-28 20:43:52 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:02 | 只看該作者
44#
發(fā)表于 2025-3-29 05:34:23 | 只看該作者
The HyperTrac Project: Recent Progress and Future Research Directions on Hypergraph Decompositionsd in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.
45#
發(fā)表于 2025-3-29 08:17:48 | 只看該作者
Local Search and Constraint Programming for a Real-World Examination Timetabling Problemboth a metaheuristic approach based on Simulated Annealing and a Constraint Programming model in MiniZinc. We compare the results of the metaheuristic approach (properly tuned) with the available MiniZinc back-ends on a large set of diverse real-world instances.
46#
發(fā)表于 2025-3-29 15:28:34 | 只看該作者
47#
發(fā)表于 2025-3-29 15:37:53 | 只看該作者
A Learning-Based Algorithm to Quickly Compute Good Primal Solutions for Stochastic Integer Programsear constraints in both stages and consistently provide near-optimal solutions. Our computing times are very competitive with those of general-purpose integer programming solvers to achieve a similar solution quality.
48#
發(fā)表于 2025-3-29 23:30:06 | 只看該作者
Reinforcement Learning for Variable Selection in a Branch and Bound AlgorithmTo our knowledge, it is the first time Reinforcement Learning has been used to fully optimise the branching strategy. Computational experiments show that our method is appropriate and able to generalise well to new instances.
49#
發(fā)表于 2025-3-30 01:07:54 | 只看該作者
50#
發(fā)表于 2025-3-30 04:09:48 | 只看該作者
Restarting Algorithms: Sometimes There Is Free Lunchcorporated in the base algorithm or argument. We will review restarts in various settings from continuous optimization, discrete optimization, and submodular function maximization where they have delivered impressive results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 哈密市| 资溪县| 筠连县| 正镶白旗| 青冈县| 天镇县| 宁国市| 调兵山市| 柯坪县| 泸州市| 平顶山市| 阜新| 汉沽区| 潜江市| 德安县| 渭南市| 吉林省| 岳池县| 五台县| 织金县| 高邑县| 隆回县| 普安县| 大埔县| 哈密市| 封开县| 东莞市| 邹平县| 资源县| 克东县| 临朐县| 泸西县| 五原县| 长治市| 固安县| 罗城| 廊坊市| 贵定县| 上饶市| 突泉县|