找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2022

[復(fù)制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-26 23:56:39 | 只看該作者
Visualizing and Explaining Language Modelswords and phrases, clustering or neuron activations can be used to quickly understand the underlying models. This paper showcases the techniques used in some of the most popular Deep Learning for NLP visualizations, with a special focus on interpretability and explainability.
32#
發(fā)表于 2025-3-27 03:08:43 | 只看該作者
33#
發(fā)表于 2025-3-27 06:06:49 | 只看該作者
Visual Analytics of Hierarchical and Network Timeseries Modelsnd navigation through sub-graphs; hierarchical clustering of nodes; and aggregation of links and nodes. These visual analytics allow expert users to compare the many aspects of the model to their real-world knowledge helping them gain an understanding of the model and ultimately build confidence.
34#
發(fā)表于 2025-3-27 12:34:44 | 只看該作者
Visual Discovery of Malware Patterns in?Android Appsidentify anomalous and malicious software on mobile devices. The visual findings are reached through text, tree and other techniques. An app inspection tool is also provided and its usability has been evaluated with an experimental study with ten participants.
35#
發(fā)表于 2025-3-27 14:51:48 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:06 | 只看該作者
Visual Analytics for Strategic Decision Making in Technology Managementa more sophisticated market positioning. The enhancements in machine learning and artificial intelligence allow more automatic detection of early trends to create future courses and make strategic decisions. Visual Analytics combines methods of automated data analysis through machine learning method
37#
發(fā)表于 2025-3-27 22:01:14 | 只看該作者
38#
發(fā)表于 2025-3-28 03:02:29 | 只看該作者
39#
發(fā)表于 2025-3-28 07:37:47 | 只看該作者
Non-linear Visual Knowledge Discovery with Elliptic Paired Coordinatesficiency of discovering predictive machine learning models interactively using new Elliptic Paired coordinates (EPC) visualizations. It is shown that EPC are capable to visualize multidimensional data and support visual machine learning with preservation of multidimensional information in 2-D. Relat
40#
發(fā)表于 2025-3-28 12:36:58 | 只看該作者
Convolutional Neural Networks Analysis Using Concentric-Rings Interactive Visualizationto represent the layers of a deep learning model, where each circular ring encodes the feature maps of that layer. The proposed technique allows to perform analysis of tasks over time regarding a single model or a comparison between two distinct models, thus contributing to a better understanding of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 加查县| 佛冈县| 廉江市| 乌拉特前旗| 渑池县| 绥江县| 潞西市| 四子王旗| 东安县| 遂宁市| 措勤县| 清镇市| 南丹县| 任丘市| 台南县| 乳源| 平远县| 柘荣县| 临漳县| 肇源县| 门源| 宜章县| 建平县| 马山县| 阿坝| 洪湖市| 宣武区| 图们市| 阜新| 颍上县| 綦江县| 喀喇沁旗| 石嘴山市| 绥棱县| 安吉县| 通河县| 进贤县| 仪征市| 淮北市| 营口市|