找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms and Their Applications; B. Davies Book 19781st edition Springer Science+Business Media New York 1978 Applications.Inte

[復制鏈接]
樓主: Inspection
21#
發(fā)表于 2025-3-25 05:22:12 | 只看該作者
Ordinary Differential EquationsLinear differential equations with constant coefficients are an important area of application of the Laplace transform. As a prelude to the discussion of such problems we discuss first two particularly simple examples, since the connection with the classical methods of solution is readily apparent in these cases.
22#
發(fā)表于 2025-3-25 10:32:31 | 只看該作者
Partial Differential EquationsAs an example to show how the Laplace transform may be applied to the solution of partial differential equations, we consider the diffusion of heat in an isotropic solid body.
23#
發(fā)表于 2025-3-25 12:36:28 | 只看該作者
The Inversion IntegralAnalytic information about the inversion integral is usually obtained by “closing the contour”, as in Section 2.4 for rational functions.
24#
發(fā)表于 2025-3-25 16:54:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:31:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:29:30 | 只看該作者
Dual Integral EquationsTo motivate this section, we first solve a classical problem of electrostatics. We wish to find the electrostatic potential φ created by an isolated thin conducting disc of radius a, whose potential is V.
29#
發(fā)表于 2025-3-26 15:37:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:43 | 只看該作者
Methods Based on Cauchy IntegralsThe major difficulty in using the Wiener-Hopf technique is the problem of constructing a suitable factorization. We consider here a method based on contour integration which leads by natural extensions to the use of Cauchy integrals in the solution of mixed boundary-value problems.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-18 21:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤翔县| 库尔勒市| 喀喇沁旗| 安溪县| 龙里县| 桓仁| 东平县| 搜索| 锦屏县| 梧州市| 二手房| 屏南县| 施秉县| 堆龙德庆县| 聂荣县| 嘉义市| 阳东县| 静安区| 阳曲县| 武功县| 郧西县| 普陀区| 四川省| 余姚市| 娄烦县| 石门县| 房山区| 南平市| 巩留县| 内黄县| 拜城县| 漠河县| 大英县| 临猗县| 淮滨县| 桓仁| 介休市| 荣成市| 马山县| 中宁县| 延吉市|