找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Transforms and Their Applications; B. Davies Book 19781st edition Springer Science+Business Media New York 1978 Applications.Inte

[復(fù)制鏈接]
樓主: Inspection
21#
發(fā)表于 2025-3-25 05:22:12 | 只看該作者
Ordinary Differential EquationsLinear differential equations with constant coefficients are an important area of application of the Laplace transform. As a prelude to the discussion of such problems we discuss first two particularly simple examples, since the connection with the classical methods of solution is readily apparent in these cases.
22#
發(fā)表于 2025-3-25 10:32:31 | 只看該作者
Partial Differential EquationsAs an example to show how the Laplace transform may be applied to the solution of partial differential equations, we consider the diffusion of heat in an isotropic solid body.
23#
發(fā)表于 2025-3-25 12:36:28 | 只看該作者
The Inversion IntegralAnalytic information about the inversion integral is usually obtained by “closing the contour”, as in Section 2.4 for rational functions.
24#
發(fā)表于 2025-3-25 16:54:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:31:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:08:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:29:30 | 只看該作者
Dual Integral EquationsTo motivate this section, we first solve a classical problem of electrostatics. We wish to find the electrostatic potential φ created by an isolated thin conducting disc of radius a, whose potential is V.
29#
發(fā)表于 2025-3-26 15:37:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:38:43 | 只看該作者
Methods Based on Cauchy IntegralsThe major difficulty in using the Wiener-Hopf technique is the problem of constructing a suitable factorization. We consider here a method based on contour integration which leads by natural extensions to the use of Cauchy integrals in the solution of mixed boundary-value problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林周县| 高雄县| 大同县| 龙州县| 凤凰县| 房山区| 天峨县| 桃园县| 永昌县| 晋中市| 铜梁县| 达州市| 东明县| 西丰县| 巴林右旗| 龙海市| 云龙县| 潍坊市| 九龙坡区| 盖州市| 桂阳县| 闻喜县| 铜川市| 湟源县| 织金县| 长泰县| 缙云县| 临城县| 衢州市| 扶绥县| 大同县| 布尔津县| 玉树县| 沙坪坝区| 天柱县| 鸡西市| 淄博市| 福海县| 信丰县| 榆树市| 织金县|