找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Operators in Non-Standard Function Spaces; Volume 1: Variable E Vakhtang Kokilashvili,Alexander Meskhi,Stefan Samk Book 2016 Sprin

[復制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-26 22:31:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:12 | 只看該作者
Two-weight Inequalities for Fractional Maximal Functions,
33#
發(fā)表于 2025-3-27 06:12:25 | 只看該作者
34#
發(fā)表于 2025-3-27 11:13:49 | 只看該作者
35#
發(fā)表于 2025-3-27 16:08:47 | 只看該作者
36#
發(fā)表于 2025-3-27 19:16:20 | 只看該作者
,More on Hypersingular Integrals and Embeddings into H?lder Spaces,g space is a quasimetric measure space. The proofs are based on some pointwise estimations of differences of Sobolev functions. These estimates lead also to embeddings of variable exponent Haj?asz–Sobolev spaces into variable order H?lder spaces.
37#
發(fā)表于 2025-3-28 01:24:13 | 只看該作者
More on Compactness,rem for integral operators. We give it in a general context of Banach Function Spaces (BFS) in the well-known sense (see Bennett and Sharpley [27])and recall that ...(Ω) is a BFS, as verified in Edmunds, Lang, and Nekvinda [75].
38#
發(fā)表于 2025-3-28 04:47:28 | 只看該作者
Applications to Singular Integral Equations,equations (10.1) with piecewise continuous coefficients. As is well known to researches in this field, to investigate such equations in a specific function space, it is important to know precise necessary and sufficient conditions for a weighted singular operator to be bounded in that space.
39#
發(fā)表于 2025-3-28 09:52:12 | 只看該作者
Hardy-type Operators in Variable Exponent Lebesgue Spaces,In this chapter we consider the Hardy-type operators . with variable exponents, in variable exponent Lebesgue spaces.
40#
發(fā)表于 2025-3-28 13:37:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武山县| 吉木乃县| 刚察县| 陇川县| 呼图壁县| 巴南区| 海丰县| 阜南县| 平泉县| 宁明县| 吴江市| 巴中市| 河西区| 彭州市| 会理县| 伊宁县| 盐边县| 无极县| 武胜县| 靖远县| 新乐市| 平罗县| 靖远县| 察雅县| 咸宁市| 济南市| 兴城市| 武义县| 云和县| 莱西市| 凤台县| 邵武市| 尖扎县| 安新县| 武宣县| 肃宁县| 白朗县| 枣庄市| 祁阳县| 左权县| 松桃|