找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Computational and An Christian Constanda,Paul J. Harris Book 2011 Springer Science+Business Me

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:09:13 | 只看該作者
42#
發(fā)表于 2025-3-28 19:37:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:03:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
Thermoelastic Plates with Arc-Shaped Cracks,al properties and solution of the theory proposed in (Schiavone and Tait .), when the plate is weakened by an arc-shaped crack. The corresponding results in the absence of the temperature factor can be found in (Chudinovich and Constanda .), (Chudinovich and Constanda .), and (Chudinovich and Constanda .).
45#
發(fā)表于 2025-3-29 10:01:32 | 只看該作者
46#
發(fā)表于 2025-3-29 13:11:16 | 只看該作者
,Analysis of Some Localized Boundary–Domain Integral Equations for Transmission Problems with Variab main results established in the paper are the LBDIE equivalence to the original transmission problems and the invertibility of the corresponding localized boundary-domain integral operators in corresponding Sobolev spaces function spaces.
47#
發(fā)表于 2025-3-29 18:49:16 | 只看該作者
,Analysis of Segregated Boundary–Domain Integral Equations for Mixed Variable-Coefficient BVPs in Exhe invertibility of the corresponding boundary–domain integral operators are proved in weighted Sobolev spaces suitable for exterior domains. This extends the results obtained by the authors for interior domains in non-weighted Sobolev spaces.
48#
發(fā)表于 2025-3-29 22:31:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:18:15 | 只看該作者
diverse group of well-established scientists Applicable to a.An enormous array of problems encountered by scientists and engineers?are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. A
50#
發(fā)表于 2025-3-30 04:47:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 新绛县| 芜湖市| 安徽省| 呼图壁县| 博罗县| 陆良县| 吉木乃县| 岳普湖县| 且末县| 兰溪市| 永年县| 慈溪市| 阿合奇县| 湘潭县| 长乐市| 页游| 湛江市| 海林市| 雅江县| 鞍山市| 武宣县| 蚌埠市| 信阳市| 五台县| 溆浦县| 芜湖市| 罗田县| 星座| 木兰县| 鱼台县| 太白县| 棋牌| 乌苏市| 育儿| 荣昌县| 罗江县| 都匀市| 海南省| 利辛县| 张家口市|