找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Methods in Science and Engineering; Analytic Treatment a Christian Constanda,Paul Harris Book 2019 Springer Nature Switzerland AG

[復制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 05:35:24 | 只看該作者
22#
發(fā)表于 2025-3-25 10:19:35 | 只看該作者
ng pathologists not found in other more general volumes of gynecologic pathology. This important work focuses almost entirely on strategies for accurate diagnosis and histologic subclassification, and the clinical correlates of these diagnosis. It provides evolving guidelines for detecting early ova
23#
發(fā)表于 2025-3-25 12:40:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:47 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:04 | 只看該作者
Singularity Subtraction for Nonlinear Weakly Singular Integral Equations of the Second Kind,is generalized to the case of a nonlinear integral equation of the same kind. Convergence of the sequence of approximate solutions to the exact one is proved under mild standard hypotheses on the nonlinear factor, and on the sequence of quadrature rules used to build an approximate equation. A numer
26#
發(fā)表于 2025-3-26 01:23:41 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:26 | 只看該作者
28#
發(fā)表于 2025-3-26 08:50:26 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:35 | 只看該作者
Two-Operator Boundary-Domain Integral Equations for Variable Coefficient Dirichlet Problem in 2D,e parametrix (Levi function) and applying the two-operator approach, this problem is reduced to two systems of boundary-domain integral equations (BDIEs). Although the theory of BDIEs in 3D is well developed, the BDIEs in 2D need a special consideration due to their different equivalence properties.
30#
發(fā)表于 2025-3-26 19:28:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 03:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
双流县| 金昌市| 广灵县| 黑河市| 承德县| 张家港市| 东港市| 盐池县| 赤壁市| 南陵县| 泸水县| 长治县| 桦甸市| 迁安市| 平舆县| 肇源县| 大宁县| 宁都县| 河津市| 大新县| 民权县| 高密市| 静海县| 太和县| 中西区| 隆安县| 堆龙德庆县| 遵义县| 横山县| 杨浦区| 邯郸县| 文登市| 镇坪县| 英超| 台江县| 蓬溪县| 昆山市| 永新县| 永德县| 关岭| 绍兴县|