找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Equations on Time Scales; Svetlin G. Georgiev Book 2016 Atlantis Press and the author(s) 2016 Time Scale.Dynamic Calculus.Integra

[復(fù)制鏈接]
樓主: 鏟除
21#
發(fā)表于 2025-3-25 03:54:34 | 只看該作者
Introductory Concepts of Integral Equations on Time Scales,A delta integral equation (or in short integral equation) is the equation in which the unknown function . appears inside a delta integral sign.
22#
發(fā)表于 2025-3-25 10:39:02 | 只看該作者
Generalized Volterra Integro-Differential Equations,In this chapter we describe the Adomian decomposition method for generalized Volterra integro-differential equations of the second kind.
23#
發(fā)表于 2025-3-25 15:03:46 | 只看該作者
Generalized Fredholm Integral Equations,In this chapter we adapt the Adomian decomposition method, the modified decomposition method, the noise term phenomenon, the direct computation method and the successive approximation method for generalized Fredholm integral equations.
24#
發(fā)表于 2025-3-25 18:50:31 | 只看該作者
Hilbert-Schmidt Theory of Generalized Integral Equations with Symmetric Kernels,Assume that .(.,?.) is continuous and Hermitian symmetric on .
25#
發(fā)表于 2025-3-25 22:28:42 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:59 | 只看該作者
The Series Solution Method,In this chapter we describe the series solution method for generalized Volterra integral equations and generalized Volterra integro-differential equations.
27#
發(fā)表于 2025-3-26 06:04:04 | 只看該作者
28#
發(fā)表于 2025-3-26 10:20:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:48 | 只看該作者
30#
發(fā)表于 2025-3-26 19:33:51 | 只看該作者
2213-3526 cludes supplementary material: This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿鹿县| 鲁山县| 福清市| 大名县| 东阿县| 高阳县| 筠连县| 岢岚县| 新绛县| 绥滨县| 景泰县| 拜城县| 惠水县| 阜新市| 阳东县| 时尚| 来安县| 连南| 永川市| 闵行区| 千阳县| 密山市| 宁波市| 云梦县| 临潭县| 安吉县| 贞丰县| 九龙城区| 仙桃市| 德格县| 且末县| 汾西县| 曲周县| 新巴尔虎右旗| 南部县| 新和县| 自治县| 武功县| 白银市| 鹤山市| 云浮市|