找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integral Equations; Theory and Numerical Wolfgang Hackbusch Book 1995 Birkh?user Verlag 1995 Approximation.Integral equation.Interpolation

[復(fù)制鏈接]
樓主: 公款
31#
發(fā)表于 2025-3-26 22:59:32 | 只看該作者
32#
發(fā)表于 2025-3-27 04:07:18 | 只看該作者
33#
發(fā)表于 2025-3-27 08:34:52 | 只看該作者
34#
發(fā)表于 2025-3-27 12:44:08 | 只看該作者
Integral Equations978-3-0348-9215-5Series ISSN 0373-3149 Series E-ISSN 2296-6072
35#
發(fā)表于 2025-3-27 14:48:24 | 只看該作者
Introduction,We begin by recalling the following example from the analysis of ordinary differential equations. Consider the initial value problem . Integration from . to . reduces this to the integral equation .. One reason why the reformulation (2) is of interest is because it is more suitable than (1) for proving existence and uniqueness of a solutions.
36#
發(fā)表于 2025-3-27 20:25:06 | 只看該作者
37#
發(fā)表于 2025-3-28 01:22:26 | 只看該作者
Theory of Fredholm Integral Equations of the Second Kind,In the very end of the last century, Erik Ivar Fredholm (Stockholm) investigated those equations, which are now named in honour of him. Together with results of Hilbert, his theory led to the development of functional analysis, which took shape in the beginning of this century.
38#
發(fā)表于 2025-3-28 02:30:34 | 只看該作者
Numerical Treatment of Fredholm Integral Equations of the Second Kind,In §§4.4.2-S and §4.4.7, several possibilities for constructing the discrete analogue . of an operator . will be described. The general properties of such approximations will be investigated in the following section.
39#
發(fā)表于 2025-3-28 07:45:21 | 只看該作者
,Abel’s Integral Equation,The following Volterra integral equation of the first kind is due to Abel (1823): .. Since the denominator . has a zero at y=x, the integral in (1) is to be understood in the improper sense (cf. §6.1.3) and Abel’s integral equation is an example of a weakly singular equation.
40#
發(fā)表于 2025-3-28 11:57:45 | 只看該作者
Singular Integral Equations,Let the function . be defined on .=[.] and, possibly, be singular at an interior point .∈(.). Recall that the improper integral was defined by.if both limits exist (cf. §6.1.3). By Remark 6.1.2a, the improper integral exists for . (.): = |.|. with .>-1. For.(i.e, s=-1) one obtains
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-4 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆川县| 专栏| 宁夏| 克山县| 玉山县| 沽源县| 华亭县| 浑源县| 定西市| 六安市| 任丘市| 资源县| 合肥市| 元阳县| 广东省| 广汉市| 肇东市| 宝兴县| 繁昌县| 云梦县| 扬中市| 石城县| 崇左市| 宁夏| 杭锦旗| 崇明县| 垣曲县| 宜阳县| 三都| 深水埗区| 东乌珠穆沁旗| 舒兰市| 闽侯县| 平原县| 图木舒克市| 左贡县| 平遥县| 晋中市| 德清县| 惠安县| 景德镇市|