找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integrability of Nonlinear Systems; Yvette Kosmann-Schwarzbach,K. M. Tamizhmani,Basil Book 2004 Springer-Verlag Berlin Heidelberg 2004 In

[復(fù)制鏈接]
查看: 44888|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:07:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Integrability of Nonlinear Systems
編輯Yvette Kosmann-Schwarzbach,K. M. Tamizhmani,Basil
視頻videohttp://file.papertrans.cn/469/468276/468276.mp4
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Integrability of Nonlinear Systems;  Yvette Kosmann-Schwarzbach,K. M. Tamizhmani,Basil  Book 2004 Springer-Verlag Berlin Heidelberg 2004 In
描述.The lectures that comprise this volume constitute a comprehensive survey of the many and various aspects of integrable dynamical systems. The present edition is a streamlined, revised and updated version of a 1997 set of notes that was published as Lecture Notes in Physics, Volume 495. This volume will be complemented by a companion book - Lecture Notes in Physics, Volume 644 - dedicated to discrete integrable systems. Both volumes address primarily graduate students and nonspecialist researchers but will also benefit lecturers looking for suitable material for advanced courses and researchers interested in specific topics..
出版日期Book 2004
關(guān)鍵詞Integrable Systems; Nonlinear Systems; Solitons; calculus; dynamical system; dynamical systems; nonlinear
版次1
doihttps://doi.org/10.1007/b94605
isbn_softcover978-3-642-05835-6
isbn_ebook978-3-540-40962-5Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Integrability of Nonlinear Systems影響因子(影響力)




書目名稱Integrability of Nonlinear Systems影響因子(影響力)學(xué)科排名




書目名稱Integrability of Nonlinear Systems網(wǎng)絡(luò)公開度




書目名稱Integrability of Nonlinear Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Integrability of Nonlinear Systems被引頻次




書目名稱Integrability of Nonlinear Systems被引頻次學(xué)科排名




書目名稱Integrability of Nonlinear Systems年度引用




書目名稱Integrability of Nonlinear Systems年度引用學(xué)科排名




書目名稱Integrability of Nonlinear Systems讀者反饋




書目名稱Integrability of Nonlinear Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:41 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/i/image/468276.jpg
板凳
發(fā)表于 2025-3-22 00:44:25 | 只看該作者
978-3-642-05835-6Springer-Verlag Berlin Heidelberg 2004
地板
發(fā)表于 2025-3-22 07:46:42 | 只看該作者
Integrability of Nonlinear Systems978-3-540-40962-5Series ISSN 0075-8450 Series E-ISSN 1616-6361
5#
發(fā)表于 2025-3-22 09:11:53 | 只看該作者
Introduction,ile for quantum systems, the representation theory of Lie groups and algebras, and of the in.nite-dimensional loop and Kac-Moody algebras are basic. There is a class of nonlinear systems which are integrable, and the methods of solution for these systems draw on many .elds of mathematics. They are the subject of the lectures in this book.
6#
發(fā)表于 2025-3-22 14:17:05 | 只看該作者
Introduction to the Hirota Bilinear Method,iscuss in detail how this works for equations in the Korteweg–de Vries class, with some comments on the more complicated cases. We also show how Hirota’s method can be used to search for new integrable evolution equations and list some equations found this way.
7#
發(fā)表于 2025-3-22 18:17:53 | 只看該作者
8#
發(fā)表于 2025-3-22 23:41:33 | 只看該作者
9#
發(fā)表于 2025-3-23 03:37:59 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 12:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜都市| 榆中县| 全椒县| 和田市| 栾川县| 桐庐县| 界首市| 西乌| 宾阳县| 宜兴市| 宁远县| 泾阳县| 钟祥市| 东兴市| 娱乐| 贵德县| 新闻| 利津县| 甘孜| 道孚县| 南和县| 营山县| 巴里| 濮阳县| 类乌齐县| 通城县| 卓尼县| 九台市| 柳江县| 泉州市| 云南省| 越西县| 水富县| 南充市| 开封市| 临武县| 铜川市| 施甸县| 定陶县| 建平县| 阿拉善右旗|