找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Integrability of Dynamical Systems: Algebra and Analysis; Xiang Zhang Book 2017 Springer Nature Singapore Pte Ltd. 2017 integrability.Jaco

[復(fù)制鏈接]
樓主: 弄混
11#
發(fā)表于 2025-3-23 10:02:57 | 只看該作者
Xiang Zhangpurposes.Advocates for including diagnostic uncertainty in pDoctors, patients, investigators, administrators, and policymakers who assign diagnoses assume three elements: the name describes an entity with conceptual or evidentiary boundaries, the person setting the name has a high degree of certaint
12#
發(fā)表于 2025-3-23 15:34:58 | 只看該作者
13#
發(fā)表于 2025-3-23 19:01:04 | 只看該作者
Xiang ZhangEquips the reader with an understanding of integrability.Summarizes the classical results of Darboux integrability and its modern development.Connects analysis, algebraic geometry, field extension, di
14#
發(fā)表于 2025-3-24 00:41:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:23 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:45 | 只看該作者
Jacobian and Inverse Jacobian Multipliers, singularity, a periodic orbit, or a polycycle. We will also use the vanishing multiplicity of inverse Jacobian multipliers to study the multiplicity of a limit cycle, or of a homoclinic loop, and the cyclicity of a singularity.
17#
發(fā)表于 2025-3-24 13:32:50 | 只看該作者
Algebraic, Analytic and Meromorphic Integrability,ian systems, and the meromorphic integrability of differential systems near a given orbit via the differential Galois group. Finally, we present an algorithm to compute the rational first integrals and the Darboux polynomials of polynomial differential systems.
18#
發(fā)表于 2025-3-24 16:34:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:30:58 | 只看該作者
Darboux and Liouvillian Integrability,Darboux and Liouvillian integrability is mainly concerned with algebraic aspects of the integrability of differential systems, which is related to many subjects, such as real and complex analysis, algebraic geometry, differential algebra, differential Galois theory, and so on.
20#
發(fā)表于 2025-3-25 02:06:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌图县| 五常市| 宿迁市| 祁阳县| 嘉峪关市| 天峨县| 垣曲县| 逊克县| 互助| 佛冈县| 通榆县| 五家渠市| 额济纳旗| 通渭县| 绍兴县| 托克逊县| 斗六市| 泰宁县| 于都县| 松潘县| 马边| 肥西县| 赤水市| 昌吉市| 永年县| 晋宁县| 南投市| 通江县| 乃东县| 三穗县| 新密市| 武宣县| 淮滨县| 凉城县| 翼城县| 攀枝花市| 峨眉山市| 海林市| 乐山市| 都安| 上蔡县|