找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Sequences; Divisibility, Lucas Masum Billal,Samin Riasat Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[復(fù)制鏈接]
樓主: morphology
11#
發(fā)表于 2025-3-23 10:18:45 | 只看該作者
ces, periods of sequences, and lifting properties of sequenc.This book discusses special properties of integer sequences from a unique point of view. It generalizes common, well-known properties and connects them with sequences such as divisible sequences, Lucas sequences, Lehmer sequences, periods
12#
發(fā)表于 2025-3-23 16:31:43 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:30 | 只看該作者
Book 2021ess of these theorems, the book also aims at being valuable for Olympiad level problem solving as well as regular research. This book will be of interest to students, researchers and faculty members alike.?.
14#
發(fā)表于 2025-3-24 01:01:24 | 只看該作者
Masum Billal,Samin RiasatDiscusses special properties of integer sequences from a unique point of view.Focuses on divisible sequences, Lucas sequences, Lehmer sequences, periods of sequences, and lifting properties of sequenc
15#
發(fā)表于 2025-3-24 05:15:12 | 只看該作者
http://image.papertrans.cn/i/image/468269.jpg
16#
發(fā)表于 2025-3-24 08:43:37 | 只看該作者
978-981-16-0572-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
17#
發(fā)表于 2025-3-24 12:26:35 | 只看該作者
Preliminaries,In this chapter, we discuss some topics from algebra that are prerequisites to the theory we will develop. First, we discuss groups, rings, fields, vector spaces, and matrices very briefly in Sects.?1.1 and 1.2.
18#
發(fā)表于 2025-3-24 17:38:32 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:55:13 | 只看該作者
Linear Recurrent Sequences,the length of the period, as well as show how to produce this bound. Finally, we discuss the theory developed by Morgan Ward on the periodicity of such sequences with the help of the .. We will see a lot of results that are of fundamental importance in this theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 蒲江县| 永济市| 宁城县| 清苑县| 瓮安县| 贵德县| 淅川县| 沅江市| 宜君县| 东乡族自治县| 陆河县| 台山市| 齐河县| 蓬莱市| 台前县| 深州市| 稷山县| 齐河县| 周宁县| 松原市| 上林县| 昭苏县| 封丘县| 张家港市| 澄城县| 东兰县| 诸暨市| 永康市| 黄龙县| 曲周县| 广饶县| 沽源县| 宾川县| 天津市| 天峻县| 阿尔山市| 河源市| 高阳县| 谢通门县| 海盐县|