找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 16th International C Michel Goemans,José Correa Conference proceedings 2013 Springer-Ve

[復(fù)制鏈接]
樓主: 貪污
11#
發(fā)表于 2025-3-23 10:30:21 | 只看該作者
12#
發(fā)表于 2025-3-23 15:08:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:42 | 只看該作者
14#
發(fā)表于 2025-3-24 02:16:39 | 只看該作者
15#
發(fā)表于 2025-3-24 03:47:11 | 只看該作者
16#
發(fā)表于 2025-3-24 09:52:56 | 只看該作者
Blocking Optimal Arborescences, In this paper we show that the following special case is solvable in polynomial time: given a digraph .?=?(.,.) with a designated root node .?∈?. and arc-costs .:.?→??, find a minimum cardinality subset . of the arc set . such that . intersects every minimum .-cost .-arborescence. The algorithm we
17#
發(fā)表于 2025-3-24 12:01:01 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:08 | 只看該作者
A Complexity and Approximability Study of the Bilevel Knapsack Problem, weight and profit coefficients in the knapsack problem are encoded in unary, then two of the bilevel variants are solvable in polynomial time, whereas the third is NP-complete. Furthermore we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot
19#
發(fā)表于 2025-3-24 22:53:22 | 只看該作者
Matroid and Knapsack Center Problems,vertex to its closest center is minimized. In this paper, we consider two important generalizations of .-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows
20#
發(fā)表于 2025-3-25 00:04:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赞皇县| 东兴市| 永定县| 漳平市| 盐源县| 峨山| 河北区| 虞城县| 蒙山县| 迁西县| 张北县| 绩溪县| 武胜县| 永兴县| 敖汉旗| 台北县| 凌海市| 浦县| 新疆| 香港 | 德格县| 天津市| 广水市| 青岛市| 广西| 顺义区| 新泰市| 方山县| 盐城市| 茌平县| 拉孜县| 忻城县| 常熟市| 桃园县| 葵青区| 汶上县| 磐石市| 定边县| 康保县| 九龙坡区| 石门县|