找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Instantons and Four-Manifolds; Daniel S. Freed,Karen K. Uhlenbeck Book 19841st edition Springer-Verlag New York Inc. 1984 Manifold.Manifol

[復(fù)制鏈接]
查看: 34154|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:10:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Instantons and Four-Manifolds
編輯Daniel S. Freed,Karen K. Uhlenbeck
視頻videohttp://file.papertrans.cn/468/467945/467945.mp4
叢書(shū)名稱Mathematical Sciences Research Institute Publications
圖書(shū)封面Titlebook: Instantons and Four-Manifolds;  Daniel S. Freed,Karen K. Uhlenbeck Book 19841st edition Springer-Verlag New York Inc. 1984 Manifold.Manifol
描述This book is the outcome of a seminar organized by Michael Freedman and Karen Uhlenbeck (the senior author) at the Mathematical Sciences Research Institute in Berkeley during its first few months of existence. Dan Freed (the junior author) was originally appointed as notetaker. The express purpose of the seminar was to go through a proof of Simon Donaldson‘s Theorem, which had been announced the previous spring. Donaldson proved the nonsmoothability of certain topological four-manifolds; a year earlier Freedman had constructed these manifolds as part of his solution to the four dimensional ; Poincare conjecture. The spectacular application of Donaldson‘s and Freedman‘s theorems to the existence of fake 1R4,s made headlines (insofar as mathematics ever makes headlines). Moreover, Donaldson proved his theorem in topology by studying the solution space of equations the Yang-Mills equations which come from ultra-modern physics. The philosophical implications are unavoidable: we mathematicians need physics! The seminar was initially very well attended. Unfortunately, we found after three months that we had covered most of the published material, but had made little real progress towards
出版日期Book 19841st edition
關(guān)鍵詞Manifold; Manifolds; Topology; differential equation; equation; mathematics; proof; theorem
版次1
doihttps://doi.org/10.1007/978-1-4684-0258-2
isbn_ebook978-1-4684-0258-2Series ISSN 0940-4740
issn_series 0940-4740
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書(shū)目名稱Instantons and Four-Manifolds影響因子(影響力)




書(shū)目名稱Instantons and Four-Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱Instantons and Four-Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Instantons and Four-Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Instantons and Four-Manifolds被引頻次




書(shū)目名稱Instantons and Four-Manifolds被引頻次學(xué)科排名




書(shū)目名稱Instantons and Four-Manifolds年度引用




書(shū)目名稱Instantons and Four-Manifolds年度引用學(xué)科排名




書(shū)目名稱Instantons and Four-Manifolds讀者反饋




書(shū)目名稱Instantons and Four-Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:25 | 只看該作者
Compactness,The invariance of signature under oriented cobordism, a crucial ingredient in Donaldson’s Theorem, depends on the compactness of the underlying manifolds. In this chapter we prove that ., the cobordism M ~ ?.??. is compact.
地板
發(fā)表于 2025-3-22 04:33:36 | 只看該作者
The Collar Theorem,We complete the proof of Donaldson’s Theorem in this chapter by showing that for λ sufficiently small, . is diffeomorphic to (0,λ) × M. Recall from (8.30) that for λ ≤ λ. there is a well-defined smooth map
5#
發(fā)表于 2025-3-22 12:39:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:38 | 只看該作者
Springer-Verlag New York Inc. 1984
7#
發(fā)表于 2025-3-22 20:07:45 | 只看該作者
Instantons and Four-Manifolds978-1-4684-0258-2Series ISSN 0940-4740
8#
發(fā)表于 2025-3-23 00:35:44 | 只看該作者
,Cones on ??2, points {p.,p.,...,p.} ? . corresponding to reducible connections. We show that after a small perturbation of ?, made either by hand or through a perturbation of the metric, a neighborhood of each singular point is homeomorphic to an open cone on ??..
9#
發(fā)表于 2025-3-23 03:59:38 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:44 | 只看該作者
https://doi.org/10.1007/978-1-4684-0258-2Manifold; Manifolds; Topology; differential equation; equation; mathematics; proof; theorem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 19:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和政县| 胶南市| 汾西县| 沁水县| 突泉县| 临潭县| 广州市| 临高县| 沙雅县| 碌曲县| 东兴市| 林甸县| 廊坊市| 镇康县| 宜都市| 丰原市| 商丘市| 新河县| 高州市| 丰原市| 延吉市| 东乌| 浦北县| 山阳县| 九台市| 鸡西市| 遂川县| 元氏县| 隆安县| 防城港市| 屯留县| 岑溪市| 淮滨县| 东安县| 阳春市| 固镇县| 乐业县| 兖州市| 五大连池市| 扶沟县| 衡南县|