找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Differenti

[復(fù)制鏈接]
查看: 15082|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:24:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Inside Interesting Integrals
副標(biāo)題A Collection of Snea
編輯Paul J. Nahin
視頻videohttp://file.papertrans.cn/468/467782/467782.mp4
概述New edition with 25 added challenge problems and solutions and 25 new worked examples.A "recipe book" with many valuable little-known integration techniques.Written with an accessible and easy-to-foll
叢書(shū)名稱(chēng)Undergraduate Lecture Notes in Physics
圖書(shū)封面Titlebook: Inside Interesting Integrals; A Collection of Snea Paul J. Nahin Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Differenti
描述.What’s the point of calculating definite integrals since you can’t possibly do them all?.What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future..This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.?.
出版日期Textbook 2020Latest edition
關(guān)鍵詞Differentiation Under the Integral; Dirichlet Integral; Euler Log-sine Integral; Feynman Integral; Integ
版次2
doihttps://doi.org/10.1007/978-3-030-43788-6
isbn_softcover978-3-030-43787-9
isbn_ebook978-3-030-43788-6Series ISSN 2192-4791 Series E-ISSN 2192-4805
issn_series 2192-4791
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱(chēng)Inside Interesting Integrals影響因子(影響力)




書(shū)目名稱(chēng)Inside Interesting Integrals影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Inside Interesting Integrals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Inside Interesting Integrals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Inside Interesting Integrals被引頻次




書(shū)目名稱(chēng)Inside Interesting Integrals被引頻次學(xué)科排名




書(shū)目名稱(chēng)Inside Interesting Integrals年度引用




書(shū)目名稱(chēng)Inside Interesting Integrals年度引用學(xué)科排名




書(shū)目名稱(chēng)Inside Interesting Integrals讀者反饋




書(shū)目名稱(chēng)Inside Interesting Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:10 | 只看該作者
地板
發(fā)表于 2025-3-22 08:01:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:46:22 | 只看該作者
Using Power Series to Evaluate Integrals,integral from 1859, connecting the gamma and zeta functions, is derived. Continuing use is made of the tricks from the earlier chapters, including Feynman’s trick. Euler’s constant is developed as an integral formulation, and the digamma function is discussed.
6#
發(fā)表于 2025-3-22 14:01:38 | 只看該作者
Using , to Evaluate Integrals,ed by such pioneers as Euler to evaluate some challenging integrals. Such integrals include the Fresnel integrals, and Euler’s log-sine integral involving the zeta function. Euler’s famous identity .?=?cos?(.)?+?.?sin?(.) plays a central role these calculations. The use of the classic transforms of
7#
發(fā)表于 2025-3-22 19:48:17 | 只看該作者
Contour Integration,the Cauchy-Riemann equations are derived and the concept of an analytic function is introduced. That is followed with discussions of the integral theorems of Green and Cauchy, integrand singularities, the residue theorem, and the complications caused by multi-valued integrands (which leads to the co
8#
發(fā)表于 2025-3-22 22:16:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:29:32 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 19:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额尔古纳市| 轮台县| 华阴市| 四平市| 微山县| 钦州市| 磴口县| 五河县| 乡城县| 高密市| 岳阳县| 仙桃市| 高清| 英山县| 罗源县| 怀来县| 许昌市| 阳新县| 宽甸| 安阳县| 石河子市| 柞水县| 广灵县| 扎鲁特旗| 来宾市| 闽侯县| 宝坻区| 中宁县| 凤庆县| 祁阳县| 横山县| 杭锦旗| 蕉岭县| 通化县| 富蕴县| 丘北县| 略阳县| 姜堰市| 沁源县| 大丰市| 微山县|