找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovative Security Solutions for Information Technology and Communications; 13th International C Diana Maimut,Andrei-George Oprina,Damien

[復制鏈接]
樓主: culinary
31#
發(fā)表于 2025-3-26 23:10:30 | 只看該作者
32#
發(fā)表于 2025-3-27 03:44:40 | 只看該作者
Hardware-Accelerated Cryptography for Software-Defined Networks with P4,plied in various customized security use cases. Thus, our solution allows engineers to avoid hardware development (VHDL) and offers rapid prototyping by using the high-level language (P4). Moreover, we test these cryptographic components on the UltraScale+ FPGA card and we present their hardware consumption and performance results.
33#
發(fā)表于 2025-3-27 07:29:23 | 只看該作者
Conference proceedings 2021and Communications, SecITC 2020, held in Bucharest, Romania, in November 2020..The 17 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 41 submissions...The conference covers topics from cryptographic algorithms, to digital forensics and cyber secu
34#
發(fā)表于 2025-3-27 10:33:28 | 只看該作者
35#
發(fā)表于 2025-3-27 14:35:07 | 只看該作者
36#
發(fā)表于 2025-3-27 18:05:56 | 只看該作者
A New Generalisation of the Goldwasser-Micali Cryptosystem Based on the Gap ,-Residuosity Assumptior-Micali manner. Our cryptosystem is in fact a generalization of the Joye-Libert scheme (being itself an abstraction of the first probabilistic encryption scheme). We prove the security of the proposed cryptosystem in the standard model (based on the gap .-residuosity assumption) and report complexi
37#
發(fā)表于 2025-3-28 01:44:45 | 只看該作者
New Insights on Differential and Linear Bounds Using Mixed Integer Linear Programming,d by Sun et al. (Eprint 2013/Asiacrypt 2014), is a popular method in this regard, which can convert the conditions corresponding to a small (4-bit) SBox to MILP constraints efficiently. Our analysis shows, there are SBoxes for which the CH modelling can yield incorrect modelling. The problem arises
38#
發(fā)表于 2025-3-28 02:17:30 | 只看該作者
39#
發(fā)表于 2025-3-28 08:33:46 | 只看該作者
40#
發(fā)表于 2025-3-28 12:58:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-7 14:46
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
根河市| 赫章县| 青州市| 台北县| 临猗县| 凤城市| 天等县| 阿克苏市| 库尔勒市| 黔江区| 汪清县| 安岳县| 富锦市| 勐海县| 伊宁市| 尉犁县| 上饶市| 瓮安县| 云南省| 中江县| 图木舒克市| 闽清县| 晋城| 博白县| 久治县| 稻城县| 若羌县| 攀枝花市| 运城市| 株洲县| 达州市| 甘孜县| 且末县| 巴南区| 宣威市| 浦县| 长宁县| 中山市| 鄂伦春自治旗| 阿拉善右旗| 名山县|