找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovative Integrals and Their Applications I; Anthony A. Ruffa,Bourama Toni Book 2022 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
查看: 11502|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:28:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Innovative Integrals and Their Applications I
編輯Anthony A. Ruffa,Bourama Toni
視頻videohttp://file.papertrans.cn/468/467392/467392.mp4
概述Features state-of-the-art developments of new integral identities and their relation with special functions.Explores expert techniques of the use of Mathematica to develop unknown formulas in practica
叢書名稱STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health
圖書封面Titlebook: Innovative Integrals and Their Applications I;  Anthony A. Ruffa,Bourama Toni Book 2022 This is a U.S. government work and not under copyri
描述.This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool .Mathematica.. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation..A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, willlead to new and useful results, and can also enable the reader to generate many other new results that are not in the book..The reader will find a myriad of novel approaches for evaluating integrals, with a focu
出版日期Book 2022
關(guān)鍵詞calculus; method of exhaustion; power substitution; Gaussian densities; Non-Gaussian distributions; Riema
版次1
doihttps://doi.org/10.1007/978-3-031-17871-9
isbn_softcover978-3-031-17873-3
isbn_ebook978-3-031-17871-9Series ISSN 2520-193X Series E-ISSN 2520-1948
issn_series 2520-193X
copyrightThis is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
The information of publication is updating

書目名稱Innovative Integrals and Their Applications I影響因子(影響力)




書目名稱Innovative Integrals and Their Applications I影響因子(影響力)學(xué)科排名




書目名稱Innovative Integrals and Their Applications I網(wǎng)絡(luò)公開度




書目名稱Innovative Integrals and Their Applications I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Innovative Integrals and Their Applications I被引頻次




書目名稱Innovative Integrals and Their Applications I被引頻次學(xué)科排名




書目名稱Innovative Integrals and Their Applications I年度引用




書目名稱Innovative Integrals and Their Applications I年度引用學(xué)科排名




書目名稱Innovative Integrals and Their Applications I讀者反饋




書目名稱Innovative Integrals and Their Applications I讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:04:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:44:35 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:00:36 | 只看該作者
The Multivariate Power Substitution and Its Variants, along with applications of the Laplace transform pairs of relevant functions, and the use of permutation symmetry. The combination of the multivariate power substitution and permutation is shown to be a powerful tool to generate interesting integral identities.
6#
發(fā)表于 2025-3-22 15:32:26 | 只看該作者
The Exponential Integral Function, the Sine Integral and Cosine Integrals,ation to the special functions of the previous chapters; here also we use permutation symmetry as well as Laplace transform pairs, either alone or in combination with the multivariate power substitution, to obtain some interesting results, in particular, in the last theorems.
7#
發(fā)表于 2025-3-22 18:22:17 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:31 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:05 | 只看該作者
2520-193X e use of Mathematica to develop unknown formulas in practica.This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitutio
10#
發(fā)表于 2025-3-23 07:10:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高密市| 涟源市| 思南县| 古交市| 仁布县| 子洲县| 邮箱| 白朗县| 长葛市| 砀山县| 文昌市| 昆明市| 宜春市| 肥西县| 同仁县| 绵阳市| 沈阳市| 格尔木市| 伊宁市| 汤阴县| 新宾| 罗田县| 滦平县| 旬邑县| 甘泉县| 平乡县| 玉溪市| 介休市| 泸西县| 凌源市| 封开县| 天峻县| 同江市| 郁南县| 比如县| 紫云| 惠州市| 淮阳县| 九寨沟县| 三明市| 赤水市|