找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovative Computing; Proceedings of the 5 Yan Pei,Jia-Wei Chang,Jason C. Hung Conference proceedings 2022 The Editor(s) (if applicable) an

[復制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-26 23:44:48 | 只看該作者
Analysis for Sequential Frame with Facial Emotion Recognition Based on CNN and LSTMal network (CNN) and long short-term memory (LSTM) are combined. We extract sequential images of facial expressions from the video and input them into the CNN model individually. To solve the problem of insufficient training data, the model learns emotion-related knowledge by transfer learning on th
32#
發(fā)表于 2025-3-27 04:53:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:30:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:42:02 | 只看該作者
A Deep Learning-Based Approach for?Mammographic Architectural Distortion Classificationams among the masses and microcalcification. Physically identifying architectural distortion for radiologists is problematic because of its subtle appearance on the dense breast. Automatic early identification of breast cancer using computer algorithms from a mammogram may assist doctors in eliminat
35#
發(fā)表于 2025-3-27 15:34:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:29 | 只看該作者
Promoting Foreign Electronic Commerce and?Economic Welfarelibrium model to investigate how production and import taxes affect the e-commerce industry and the economy as a whole. We found that the welfare of Korea is reduced the most when import tax is imposed on both international trade margins and international transport margins. More specifically, in the
37#
發(fā)表于 2025-3-27 23:09:14 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:48 | 只看該作者
A Feature Fusion-Based Approach for?Mammographic Mass Classification Using Deep Learningcer. The manual detection of breast masses using texture analysis from digital mammograms is hard because of its diverse patterns. Automatic detection of breast masses from mammograms with computer algorithms at early phases could help physicians to avoid unnecessary biopsies. In the current study,
39#
發(fā)表于 2025-3-28 09:54:26 | 只看該作者
Recognition of?Chinese Medical Named Entity Using Multi-word Segmentation Methodn. Medical named entity recognition can transform the free text in an electronic medical record from information to data, so it has high research value and application value. However, most of the current deep learning methods use character-level segmentation for semantic feature extraction, which le
40#
發(fā)表于 2025-3-28 10:39:17 | 只看該作者
Chinese Electronic Medical Record Retrieval Method Using Fine-Tuned RoBERTa and?Hybrid Features records can not only offer great help to clinical decision-making but also bring benefits and convenience to case-based patient research and the unearthing of similar patient groups. However, the existing electronic medical record retrieval model cannot accurately and efficiently retrieve similar m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
济南市| 中宁县| 临澧县| 汉阴县| 芜湖县| 余庆县| 新蔡县| 南部县| 屯留县| 翁牛特旗| 筠连县| 英超| 深州市| 兰考县| 肥城市| 西贡区| 和硕县| 儋州市| 上饶县| 吉水县| 曲周县| 安康市| 蓬莱市| 牙克石市| 安化县| 黑山县| 东乡族自治县| 穆棱市| 伊宁市| 济南市| 田东县| 怀远县| 济宁市| 大连市| 新余市| 祁东县| 毕节市| 新源县| 吴堡县| 定西市| 四会市|