找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Innovations in VLSI, Signal Processing and Computational Technologies; Select Proceedings o Gayatri Mehta,Nilmini Wickramasinghe,Deepti Kak

[復(fù)制鏈接]
樓主: hydroxyapatite
51#
發(fā)表于 2025-3-30 09:22:04 | 只看該作者
Reinforcement Learning Method for Identifying Health Issues for People with Chronic Diseases,on accuracy and the convergence speed have been analysed for various data sets. It is based on the AutoLearn algorithm (ALA), which can identify a tool for determining elements in a data set and the broad variations of chronic diseases. The prediction accuracy and the convergence speed have been obt
52#
發(fā)表于 2025-3-30 15:55:31 | 只看該作者
Metrics Evaluation of Bell Pepper Disease Classification Using Deep Convolutional Neural Network (Der, experimental results are presented on bell pepper diseases for MobileNetV2 with better accuracy of 99.42%. The various performance metrics such as accuracy, precision, recall and F1-score, ROC curve are used to determine the accuracy of the model.
53#
發(fā)表于 2025-3-30 20:17:27 | 只看該作者
Enhanced Intracranial Tumor Strain Prediction and Detection Using Transfer and Multilevel Ensemble the next level of ensemble learning, where it achieved the accuracy of 96% with loss of 10% on training set and 91% accuracy with 14% loss on validation set. The training was done on 60 epochs. Analysis of factors affecting intracranial tumors includes use of Random Forest algorithms that gave 93%
54#
發(fā)表于 2025-3-30 22:26:56 | 只看該作者
55#
發(fā)表于 2025-3-31 00:56:57 | 只看該作者
Deep Learning-Based Multi-label Image Classification for Chest X-Rays,ng test data that has not yet been observed. With no patients from the training set appearing in the test set, 200 trials from 200 patients were randomly selected from the whole dataset. Our experimental setup gives results that are an improvement upon earlier work; thus, this study will provide gui
56#
發(fā)表于 2025-3-31 08:32:11 | 只看該作者
57#
發(fā)表于 2025-3-31 12:40:03 | 只看該作者
58#
發(fā)表于 2025-3-31 17:11:03 | 只看該作者
Innovations in VLSI, Signal Processing and Computational TechnologiesSelect Proceedings o
59#
發(fā)表于 2025-3-31 19:29:46 | 只看該作者
60#
發(fā)表于 2025-3-31 23:55:35 | 只看該作者
Innovations in VLSI, Signal Processing and Computational Technologies978-981-99-7077-3Series ISSN 1876-1100 Series E-ISSN 1876-1119
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 陆丰市| 长宁区| 玛沁县| 眉山市| 浙江省| 灌云县| 雅安市| 资源县| 隆回县| 沧源| 凤冈县| 昆山市| 高台县| 神木县| 衡南县| 宁海县| 开平市| 宁化县| 花莲县| 怀化市| 锡林浩特市| 原阳县| 徐州市| 乐都县| 莆田市| 台北市| 安远县| 旬阳县| 南陵县| 临沂市| 工布江达县| 河津市| 安义县| 三门峡市| 神池县| 怀来县| 东阿县| 陆良县| 长白| 屯门区|