找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Security and Cryptology – ICISC 2019; 22nd International C Jae Hong Seo Conference proceedings 2020 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: Lactase
31#
發(fā)表于 2025-3-27 00:08:49 | 只看該作者
Sum It Up: Verifiable Additive Homomorphic Secret Sharing,ving .. More precisely, we employ: . homomorphic collision-resistant hash functions; . linear homomorphic signatures; as well as . a threshold RSA signature scheme. In all three cases we provide a detailed correctness, security and verifiability analysis and discuss their efficiency.
32#
發(fā)表于 2025-3-27 01:20:26 | 只看該作者
33#
發(fā)表于 2025-3-27 09:05:39 | 只看該作者
An Automated Security Analysis Framework and Implementation for MTD Techniques on Cloud,vious framework and designed, implemented and tested a cloud security assessment tool in a real cloud platform named UniteCloud. Our security solution can (1) monitor cloud computing in real-time, (2) automate the security modeling and analysis and visualize the GSMs using a Graphical User Interface
34#
發(fā)表于 2025-3-27 09:47:16 | 只看該作者
Faster Bootstrapping of FHE over the Integers,the scale-invariant FHE over the integers called CLT scheme, it takes 6?s for 500-bit message space and 80-bit security on a desktop. We also apply our bootstrapping method to the homomorphic evaluation of AES-128 circuit: It takes about 8?s per 128-bit block and is faster than the previous results
35#
發(fā)表于 2025-3-27 14:18:54 | 只看該作者
Complete Addition Law for Montgomery Curves, expense of additional storage for the two curve parameters and for the conversion between them. However, smart devices in IoT environments that mainly operate ECDH (for example, . mode of IETF RFC 7250) do not need to implement such a conversion if a complete addition law does exist for the Montgom
36#
發(fā)表于 2025-3-27 19:43:43 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:22 | 只看該作者
Dongyoung Roh,Bonwook Koo,Younghoon Jung,Il Woong Jeong,Dong-Geon Lee,Daesung Kwon,Woo-Hwan Kim
38#
發(fā)表于 2025-3-28 04:46:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:01:33 | 只看該作者
40#
發(fā)表于 2025-3-28 11:33:04 | 只看該作者
Máté Horváth,Levente Buttyán,Gábor Székely,Dóra Neubrandt
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
读书| 平南县| 温州市| 乃东县| 南皮县| 香格里拉县| 清河县| 墨玉县| 外汇| 晴隆县| 武宣县| 兰考县| 杭锦后旗| 称多县| 禹州市| 侯马市| 昆明市| 阜宁县| 个旧市| 鸡西市| 色达县| 梨树县| 江口县| 砚山县| 林口县| 南澳县| 雅安市| 阿合奇县| 行唐县| 镇坪县| 苏尼特右旗| 长宁县| 开鲁县| 光泽县| 天等县| 公安县| 海口市| 汝州市| 新巴尔虎右旗| 绵阳市| 九寨沟县|